Comment on "Effective Magnetic Moments of Heavy Fermions and the Wilson Ratio for Kondo Lattices"

Zou and Anderson $(ZA)^1$ have proposed an explanation for small Wilson ratios (*R*) obtained² for some heavy-fermion superconductors. ZA perform an effective band calculation in which two of six $J = \frac{5}{2}$ states per Ce atom hybridize with a spin- $\frac{1}{2}$ free-electron band, as shown in Fig. 1. Note that T_K and $\tilde{V}(\sim \sqrt{D}T_K)^{3,4}$ correspond to ZA's ϵ_0 and α , respectively. The renormalized Fermi-level density of states per spin $\tilde{N}(0)$ is given by $\tilde{N}(0)/N(0) = (\tilde{V}/T_K)^2 = m^*/m$. ZA have shown that the zero-temperature Pauli susceptibility $\chi_P(0)$ for the lower (-) band is given by

$$\chi_{\rm P}(0) = u_{\rm P}^2 [2\tilde{N}(0)] = 1.16 \mu_{\rm B}^2 [2\tilde{N}(0)]. \tag{1}$$

I wish to point out that consideration of (i) Van Vleck terms omitted by ZA and (ii) a model including crystalline-electric-field (CEF) splitting shows that the effective moment μ_{eff} one should use in *R* appears in the ionic (zero hybridization) Curie law.

With notation as per Fig. 1, the Van Vleck susceptibility $\chi_{VV}(0)$ is

$$\chi_{\rm VV}(0) = \sum_{p} \langle \left| \langle \frac{5}{2} k \uparrow \left| \mu_z \right| \frac{5}{2} k p \rangle \right|^2 \rangle_{\rm FS} \mu_{\rm B}^2 [2\tilde{N}(0)] \quad (2)$$

$$= (g_J^2 J (J+1) \mu_{\rm B}^2 / 3 - \mu_{\rm P}^2) [2\tilde{N}(0)].$$
(3)

Here $\langle \rangle_{FS}$ denotes an angular average over the Fermi surface, and $\mu_z = l_z + 2S_z$ is the usual magnetic moment operator. $\chi_{VV}(0) \sim \chi_P(0)$ because the Van Vleck energy denominator is precisely $T_K \sim \tilde{N}(0)^{-1}$ (see Fig. 1). Equation (3) follows from inserting a complete set of f

FIG. 1. ZA effective band model. ϵ_k is the bare conduction-band dispersion, and $\{|\frac{5}{2}\mathbf{k}p\rangle\}$ the unhybridized f bands.

TABLE I. Model properties. Note N = 2J + 1.

Model	$\left(\frac{\mu_{\rm eff}}{\mu_{\rm B}}\right)^2$	3 x (0)	$\frac{3\gamma(0)}{(\pi k_{\rm B})^2}$	$3(k_{\rm B}T)\chi(T)\big _{T,\tilde{V}=0}$
ZA ^a	$g_f^2(J+1)$	$2\tilde{N}(0)\mu_{\rm eff}^2$	$2\tilde{N}(0)$	μ_{eff}^2
$SU(N)^{b}$	gf(J+1)	$N\tilde{N}(0)\mu_{eff}^2$	$N\tilde{N}(0)$	μ_{eff}^2
CEF	$3g_{\Gamma}^2$	$2\tilde{N}(0)\mu_{\rm eff}^2$	$2\tilde{N}(0)$	μ_{eff}^2
^a Reference 1.		^b Reference 3.		

states in (2) (including the $J' = \frac{7}{2}$ excited manifold). Here $g_J = \frac{6}{7}$.

The net $\chi(0)$ value and linear specific-heat coefficient $\gamma(0)$ are given in Table I. In view of the conventional definition $R = (\pi k_B/\mu_{eff})^2 [\chi(0)/\gamma(0)]$,^{2.5} it is clear that $\mu_{eff}^2 = (2.54)^2 \mu_B^2$ for both ZA's model and the less realistic SU(N = 6) effective band model considered elsewhere.³

Now consider a model with CEF splitting $\Delta_{\text{CEF}} \gg T_{\text{K}}$, with f levels of cubic Γ_7 symmetry having total ionic Zeeman splitting in applied field h of $2g_{\Gamma}\mu_B h$. The angular dependence forced by cubic symmetry leads to the combination of squared matrix elements of μ_z appearing in $\chi(0)$ to be g_{Γ}^2 over the Fermi surface except for a few regions of angular width $\sim (m/m^*)^{1/2}$.

Thus, in all cases (see Table I), the correct μ_{eff} value is read off from the zero hybridization (free ion) Curie law. For CePd₃, CeSn₃, and α -Ce ($\Delta_{CEF} \ll T_K$ so μ_{eff} = 2.54 μ_B) the *R* values are 1.4, 0.9, and 1.4, respectively.⁵ For CeCu₂Si₂, ($\Delta_{CEF} \gg T_K$) χ (0) = 0.019 emu/mole (along the *c* axis),⁶ χ (0) = 1000 mJ/mole-K,^{2,7} and ($\Gamma_7 \mid \mu_z \mid \Gamma_7$) = 1.08,⁸ so *R* = 1.2.

I thank J. W. Wilkins, L. Coffey, and C. Jayaprakash for helpful comments. Prior to publication, I received a preprint by F. C. Zhang and T. K. Lee with the same $\chi_{VV}(0)$ result.

D. L. Cox

Department of Physics Ohio State University Columbus, Ohio 43210

Received 23 December 1986 PACS numbers: 75.20.En, 75.20.Hr

¹Z. Zou and P. W. Anderson, Phys. Rev. Lett. **57**, 2073 (1986).

 2 G. R. Stewart, Rev. Mod. Phys. **56**, 755 (1984); see Table IV.

³N. Read *et al.*, Phys. Rev. B **30**, 384 (1984); A. Auerbach and K. Levin, Phys. Rev. Lett. **57**, 877 (1986).

⁴T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985).

 5 D. M. Newns and A. C. Hewson, J. Phys. F 10, 2424 (1980).

⁶B. Batlogg et al., J. Appl. Phys. 55, 2001 (1984).

⁷F. Steglich et al., Phys. Rev. Lett. 43, 1982 (1979).

⁸S. Horn et al., Phys. Rev. B 23, 3171 (1981).