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Crossover from Linear to Nonlinear Resistance near
Percolation

In a recent Letter, ' Gefen et al, discussed the cross-
over from linear to nonlinear voltage-current characteris-
tics of dilute resistor networks in which each individual
resistor has the relation

V =rI+ aI'. (1)
Although each resistor deviates from linearity at a
current I„—(r/a) '~ ' '), the total network is expected
to show such deviation at an external current I,'„t, which
depends on both the system size L and the concentration
p. Gefen et al. argue that I;„t-Zp(L) for L & g
[Zp(L) is the linear conductance on scale L, and

g —(p —p, ) " is the percolation connectedness length],
and that I,'„,—Z" for L & g. They then give bounds on x
and y.

In this Comment, I give explicit values for the ex-
ponents x and y, and discuss in more detail the crossover
f roL & g.

Consider first the case L & g, equivalent to p =p, .

The total power in the network is given by

P = ,' &,~
I Ib I

'+— (2)

where Ib is the current through the resistor on bond b of
the infinite incipient cluster. The Ib s also depend impli-
citly on a, via the nonlinear KirchoA equations. Howev-

er, one can use a generalization of Kohn's theorem to
show that (BP/r)a) ~, -p =g& ~ Ib (

'+'/(a+ 1), where Ii,
are the currents when a =0. To leading (linear) order in

a, we can thus replace Ib by lt, in Eq. (2), and write

P = —,
' rM(1)I + [a/(a+1)]M( —,

' (a+1))I'+', (3)
where

M(q) =g, (I'/I)" (4)
is the 2qth moment of the currents in the linear problem.
These moments have been studied in detail, and are
known to behave as M(q) —L~ ~, with the multifractal
exponents P(q).

The linear resistance, obtained via R =(8 P/I)I ),
thus shows deviations from a constant (for a & 1) for

I & I (I.)-I'[M(1)/M(-'( +1))]'"
-I„'L-"'-X,(L) -~,

with

y = [1 —y(-,' (a+1))/y(1)]/(a —1). (5)
Since y(q) is montonically decreasing and convex, y(a)
is a decreasing function of a. Using estimates from Ref.
3, one has y(a) =0.18, 0.17, 0.08, 0 (d=2) and y(a)
=0.10, 0.08, 0.06, 0 (d =3) for a =0, 1, 3, ee [the value
at a =1 is given by y(1) = —

—,
' (t) lnfr/I)q)z-~]. y =0 for

all a at d & 6. For a & 1 we thus conclude that
0 & y & y(1), and the linear regime I & I, (L) extends to
larger currents for larger samples. For a & 1, the linear
behavior occurs only for I & I„(L). Therefore, even a
narrow nonlinear regime will be enhanced in the dilute
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FIG. 1. Crossover current for d=2. (a) Fixed p and (h)
fixed L.

network.
If L & g, Gefen et al. write I',„ (Lt) =I„(g)(L/g)

Therefore, I,'„t increases much faster with L, for
fixed p, as L ' [Fig. 1(a)]. In the experimental situa-
tion described in Ref. 1, for fixed L, I,'„t decreases
as p approaches p, from above, but reaches a plateau
when g exceeds L [Fig. 1 (b) l. Explicitly, I;„,
-Ld '[ZL )]", with x = [d —

1
—yP(1)]/[d —2

+y(1)]. For d=2, this yields x =1.03 —y. For a=3,
x =0.97, incompatible with the experiments of Ref. 1.
Detailed experimental checks of the L dependence of I,„t
on other experimental systems, and of the enhancement
of the nonlinear regime when a ( 1, will be very interest-
ing.
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