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Scattering Properties of a Model Bicontinuous Structure with a Well Defined Length Scale
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Cahn's scheme for simulating the morphology of isotropic spinodal decomposition is adapted to a
mathematical model of bicontinuous partitioning of space by interfacial pairs that may be useful for
problems of microdispersed and microporous systems distinguished by a morphology with a well defined
length scale, including surfactant films in microernulsions and coatings in porous media. Real-space and
scattering properties are analyzed, and qualitatively the model accounts for the principal features of re-
cent contrast-variation small-angle neutron-scattering experiments on Winsor III type microemulsions.

PACS numbers: 82.70.Kj, 61.12.Bt, 61.90.+d

Contrast-variation small-angle neutron-scattering ex-
periments' indicate that microemulsions of the Winsor
III type containing equal volumes of oil and water are
bicontinuous structures in the sense that the subvolumes
occupied by oil and water, while densely interspersed, are
each physically connected across the specimen, possibly
as the fluid analog of porous solids. [Microemulsions
are oil and water mixtures stabilized by surfactant.
Winsor III type coexist with excess oil and water; I (II),
with excess oil (water). ] Evidence for this morphology
comes from measurements in which scattering from the
interfacial surfactant medium is enhanced by matching
of the scattering-length densities of oil and water to
eliminate the contrast between them. The featureless in-

tensity observed at this contrast by de Geyer and Ta-
bony ' decreases monotonically with increasing wave
vector and cannot be interpreted in terms of closed
spherical shells of surfactant mixture, as can the scatter-
ing observed for microemulsions sufficiently far removed
from oil and water isometry (Winsor I and II) ' and for
microemulsions in which bicontinuous structure is inhib-
ited by spontaneous curvature of the surfactant film,
which favors globules. Furthermore, determination' of
the Patterson function shows that in the Winsor I II
phase the surfactant film extends continuously over dis-
tances large compared with physically reasonable droplet
sizes, ' and cross-correlation measurements by Auvray et
al. indicate that this interfacial film has zero mean cur-
vature, implying a disordered bicontinuous structure.
However, when the dominant contrast is between oil and
water, a prominent peak is observed, ' which is incon-
sistent with existing models of randomly interpenetrating
two-phase microstructures, including those based on
Voronoi tesselation. This peak may thus indicate a
structure with a definite length scale, and recent
theories '' suggest that a key feature of Winsor III mi-
croemulsions is that they have a well defined length scale
imposed by the bending rigidity of the surfactant lay-
er. ' '' We show here that an algorithm originally in-
vented by Cahn' to simulate morphology influenced by
spinodal decomposition in isotropic two-phase systems

—where a well defined length scale also emerges —can
be adapted to the description of the scattering properties
of these microemulsions.

Cahn's scheme' associates an interface between two
material phases of uniform density with a level set (con-
tour) of a random standing wave, Stv(r), composed of N
sinusoids having fixed wavelength ), but random direc-
tions It„, phase constants p„, and amplitudes 2„:

IV

Stv(r) =, ,I, g W„cos(kk„.r+(t„),
(N(W')) '" „=,

p(r) =O.p(Stv(r)), (2)

where O,tt(S) =1 for a ~ S ~ P, 0 otherwise. The densi-
ty self-correlation function, I (r) =(p(r)p(0)), where an-
gular brackets denote an ensemble average over the ran-
dom parameter space, can then be exactly expressed as

where k =2tr/X and (2 ) is the mean square sinusoid
amplitude. The normalization is chosen here so that the
rms wave amplitude is of order unity. For example, for
an isometric partition, a two-phase interface coincides
with the zero set of S~(r)—the set Ir] on which
Stv(r) =0—since over a large space (1) is positive as
often as it is negative. Cahn s numerical simulations of
this process are remarkably evocative of the morphology
of phase-separated glasses, as imaged by micrographic
techniques; the model structure is highly interconnected,
even well away from volume-fraction isometry. '

We extend this approach to a description of the inter-
space between a pair of interfaces associated with two
nearby level sets of the same wave, say the e set and the
p set [such that Stv(r) =a and p], to provide a new mod-
el for an interfacial film or coating, while the two regions
contiguous to this define the complementary bulk parti-
tions appropriate to the problem. For example, see Figs.
1 and 2.

Thus for the wave (1) we define the leveled density
field of the (a, P) interspace by
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FIG. 1. White marks the ( —0.14,0. 14) interface of (1) for
%=50 and A„= 1, sampled in a planar section.

FIG. 2. White-black interface is the zero set of the same
standing wave used in Fig. l.

the double integral

1(r) = ' I! dxdy jo(6x)jo(6y)e "'+~ (3)

where 6 =p —a, e = (a+ p)/2, jo(x) is the spherical
Bessel function, and

( —1) &2 (x y r)
g(x,y;r) =—

'(~') (2m)!
(4)

tc„(x,y;r) is the nth cumulant' average of 2A[xcos(krp
+ttr)+y cos(ttr)] over independently distributed A, p, and

Only even cumulants contribute since ttr is uniform
over (0,2n); also, p is uniform over ( —1, 1), correspond-
ing to a uniform distribution of k on the unit sphere.
The m =1 term is independent of N, and thus is the im-
portant one as N becomes large, in keeping with Cahn's
observation that the simulated morphology stabilizes
rapidly with increasing N. ' The limit of I (r) as
N ~ thus is representative of the large-N behavior of
the leveled wave morphology —to which we now
specialize —and is obtained from (3) with

g(x,y;r) x ~+y 2+2xyjo(kr). (5)

The spherical Bessel function in (5) is the self-
correlation of the random sinusoid J2cos(k r+(tr). I (r)
is independent of the A distribution in the infinite-N lim-
it. With (5) in (3) one verifies that I (~) =I (0) and
co=r(0) =[erf(P) —erf(a)]/2, where co is the volume
fraction occupied by the interspace and erf(x) is the er-
ror function. The bulk partitions have volume fractions
cl =[I —erf(p)]/2 and c2=[1+erf(a)]/2, with co+el
+c2=1. Cahn's two-phase model is retrieved by our

(=co(1 —co)J3X/(e P +e ' ) (6)

can be identified with the mean chord length. ' The
linearity of y(r) at the origin is distinctive of sharp,
smooth boundaries. The total interfacial area Z con-
tained in sample volume V is thus defined for the leveled
wave model by the use of (6) in Porod's formula,
(=4co(1 —co) V/Z. ' For the special case of isometric
two-phase morphology (a —~, P=0) the integral in
(3) can be completely reduced, leading to

) (r) = (2/zc) arcsin [jo(kr) ].

This gives g = J3X/4, in agreement with (6). For r
) (r) -2jo(kr )/x, which is characteristic of the unlet cled
wave (1), and explains for the first time the appearance
of a sharp diAraction peak from the two-phase model as
observed in optical Fourier transforms. '

The intensity of scattered radiation from the inter-
space in Born approximation is

J(q) =co(1 —co)& r ) (r)j o(qr)dr (8)

multiplied by 4+V@, where q is the scattering wave vec-
tor, and g is the contrast between the interspace medium

!
taking a —~. The leading behavior of I (r) near
r =0 is found to be ) (r) —1

—r/(, where y(r) = [I (r)
—co]/co(l —co) is the fluctuation self-correlation of the
interspace, with ) (0) 1 and ) (~) =0, and where
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h d bulk partitions. Expanding e p gex( — ) inand matc e u

r ent series(3) and using ea s(5) 1 d to a uniformly convergen
representation,

co(1 —co) y(r) =Q„C„jo(kr),

which may be integrated term by teterm in (8). The C„
are

C„= [e P'H„ i(P) —e "0„,(a)]'
~n ~I2"

( )
'

the Hermite polynomial. Thus,for n=1, . . . ; H„ix is e
for X

( ) = C|6(q —k)+ C20o (2 —
qk — ) (10)

2k 2 4qk

lus a nonsingular remainder encomp gassin the contribu-
h he n =3 term, which I do not discuss

Th fi t t rm in (10), the transform of jo r, e-
d rr t line at q=k, while the secon,scribes a sharp airrraction ine a

f ' (kr) diverges hyperbolically asthe transform o jp r,

q 0. As mentione atd at (7) the line is associated with
the un eve e wh 1 led wave underlying the morphology an is not
broadene y e od b the Fourier components intro uce p-

tall ab-citly by leve ing. e1 The hyperbolic divergence is tota y
b (7),sent from the isome ric w-h t c two-phase case described y

' (kr) series, while for small cowhich generates an od jp r
, C = 128co(hc) /rr and C2=8co rr,

in that the diAraction peak is extinguishe rapi y
of

' (kr) contribute.as Ac 0, where only even powers o jp r
tr Ii is the only scattering singularityThus, at isometry 1 q is e

1 film a novel diA'raction eAect associ-from the inter acia m, a
ated wit t e a geh h 1 braic decay of correlations in t e topo-
ogy.

~ ~ ~ ~ ~

e some kIn practice i is m't '
more realistic to intro uc

Ifes enerating the structure.dispersion into the modes ge g
the wave num ers o eb f the sinusoidal population in

have probability density P(k), then j o(kr) in (5 is re-
( ) =fP(k) 'o(kr)dk. Taking P(k) as a nar-

row Gaussian, cenG entered on kp with variance, giv
r(r) = jo(kr)exp —6 rk /2) and the two terms shown
in (10) are consequently replaced by

(~/2) '"C,
exp

(q —kp) '
2ak'

—exp
(q+k, )'

2ak'

+
2

2erf
~C2 q

8kpq

q
—2kp q+2kp—erf

ned while the hyperbolic divergence tsThe line is broadene, w i e e
moderate tod 1/Ak at the origin. Equation

nd 4 for the two limiting contrasts emp oye
in neutron-scattering measurements on i

c standing for either oil or water.microemulsions, ci s an i

3 represents contrast between oi an waFigure rep
1 it k a —~ and redefine cp aand c2 in anphases only fata e a

st be-h 1 Fi . 4 corresponds to contrast e-
tween the surfactant interspace and the matche~ oi an

water bulk. The general behavior near bulk isometry is
simiar in ob th cases to the observed scattering' and
shows how t e pea an k t one contrast and the monotonic
decrease at t e o erh th can both be reconciled with a isor-
dered bicontinuous structure.

the first unifiedThe leveled wave method thus provides the first uni e

0.5
0.15

r oil-water contrast (single in-FIG. 3. Scattering intensity for oi -w

terface)' Eq. () 1), normalized to the maximum, for cp =0,
hk/ko =0.05, and a range of cl.

2kp

or surfactant-bulk contrastFIG. 4. Scattering intensity for su
E . (11) normalized to the maximum, or(double interface; q. , n

co =0. 1 hk/ko =0.05, and a range of cl.
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description of the main features of contrast-variation
scattering data from the Winsor III phase, reinforcing
the idea that these microemulsions, although disordered,
have a morphology with a definite length scale —fixed in

the model by the common wavelength of the modes used
to construct the random sum in (1). The nonequilibrium
processes responsible for mode selection in spinodal
decomposition are diA'erent from the equilibrium corn-
petitions that stabilize Winsor III microemulsions, but
such physically distinct systems may have related topo-
logical properties stemming from the imposition of a well
defined length scale.

The character of Cahn's morphology is further eluci-
dated by its curvature properties. If ~-~ and ~2 are the lo-
cal principal curvatures' on a P set, the local mean
curvature, H = (xt+ x2)/2, may be computed from
H =V n/2, where n(r) is the unit normal vector field
generated by S(r) = —Stv(r) of (1). Then, on a P set
H(r) =[A P+S "(r)]/2S'(r), where the prime denotes
the normal derivative. For N=50, numerical simulation
gives (H) = 0.7kP, where (x) =fxdZ/Z here denotes the
average over the surface Z, so that (H) =0 on a zero set,
the surface separating isometric bulk partitions, con-
sistent with Auvray et aI. For a family of parallel sur-
faces [constant S '(r) ], the local Gauss curvature,
K=xtx2, satisfies IC(r) =2H(r) —

~

H'(r) ~.
' With S'

=D, one then has H=k P/2D and K=k (P —D /k )/
2D; for P =0, in particular, H=O and K= —k /2, in-

dependent of D. Such a surface is saddlelike everywhere
and satisfies formal requirements for nonplanar mini-
mum area. ' The actual P sets of (1) are not a parallel
family —the film in Fig. 1 is not uniform —but on the
average the zero set has qualities of a minimal surface,
with simulations giving D = (S') =k/ J2 and (H )
= 0.04k, so that (K) = —k /2. These properties (near
the zero set) confirm Scriven's conjecture ' on the
minimal property of Cahn's isometric morphology and
are consistent with physical interfaces having very small
spontaneous curvature, as required for a description of
Winsor III microemulsions. ' ' Finally, for isometric bulk
partitions, the interspace described here has average
thickness d = 2P/D =0.4co) . Thus, taking X =48 nm

from the position of the peak in the Winsor III scattering
at oil-water contrast and co=6%, assuming that all
the surfactant-cosurfactant mixture resides in the film,
we get d =1.1 nm, in agreement with the reported thick-
ness estimate (d = 1 nm).

The author is grateful to C. 3. Glinka for invaluable
discussions about this work.
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