
VOLUME 58, NUMBER 25 PHYSICAL REVIEW LETTERS 22 JUNE 1987

Bound-Magnon Dominance of the Magnetic Susceptibility of the One-Dimensional Heisenberg
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2 Ferromagnet Cyclohexylammonium Trichlorocuprate(IO
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In order to compare linear spin-wave theory with the effects of nonlinear excitations in spin- —, Ising-
Heisenberg ferromagnetic chains, we have studied the differential susceptibility of (C6H||NH&)CuC13 in
the region 4.2 K & T (40 K, in fields of 0, 1, 2, and 3 T. The data are analyzed in terms of linear spin-
wave theory and a nonlinear theory which includes bound-magnon effects. Our analysis shows that
linear spin-wave theory cannot describe the data, and that the susceptibility is dominated by the bound-
magnon contribution. The correspondence between bound magnons and solitons is discussed.

PACS numbers: 75. 10.Jm, 75.30.Ds, 75.50.Dd

The detailed theoretical analyses of quantum spin
chains wi&ich have appeared during the past ten years'
cast serious doubt on the validity of linear spin-wave
(SW) theory in one-dimensional (1D) magnets. Al-
though very successful in describing the properties of a
wide variety of higher-dimensional systems, current
theoretical understanding in 1D indicates that the basic
assumptions intrinsic to SW theory may be flawed,
creating questions about its applicability in certain 2D
and 3D systems. For the quantum limit of spin- —,

'

(S = —,
' ) theoretical analysis of the Heisenberg chain

with various anisotropies is largely complete, ' and
shows an unusual complex behavior caused by bound
SW states, also called bound magnons (BM's), whose

energy levels lie below the SW continuum. In many
cases analytic calculations predict that the static and dy-
namic properties are controlled almost entirely by BM's.
Our own earlier numerical results, based on the work of
Johnson and Bonner, indicate that BM's totally dom-
inate SW's in determining the thermodynamics of the
nearly Heisenberg limit of the S = 2, 1D, Ising-
Heisenberg ferromagnet (S= —,', 1D, HIF). The im-

portance of BM's is further expanded in light of contin-
ued interest in magnetic solitons and recent work dealing
with quantum corrections to the classical models. ' A
close correspondence has been shown to exist between
BM s in quantum spin chains and the classical spin soli-
tons predicted by the sine-Gordon and other soliton mod-
els. ' " In this Letter we present experimental data
which clearly show the existence of BM's in the nearly
Heisenberg limit of the S = 2, 1D, HIF, and unambigu-
ously demonstrates that SW theory does not provide an
adequate description of the thermodynamics of this sys-
tern.

Despite the relevance of theories for S=
2 chains,

there have been surprisingly few experimental investiga-
tions of the analytical predictions, and all of these have
concentrated on spectroscopic measurement of BM ener-

gy levels, mostly in Ising systems. Bound magnons were
first observed by Torrance and Tinkham ' using far-

infrared absorption to measure the first five BM energy
levels in the S= —,

' quasi 1D Ising ferromagnet CoC12
2H20. Other studies using infrared absorption and

ESR to measure the energy levels have since been done,
not only in CoC12 2H20, ' but also in the S= —,

' Ising
chain ferromagnets CoBr2 2H20, ' RbFeCl3 2H20, '

CoC12(NC5Hs)2, ' and in the S = —,
' Ising antiferromag-

net RbCoC13 2H20. ' For the more interesting case of
isotropic systems, we are aware of only one experimental
investigation. Hoogerbeets et al. ' have used ESR to
measure the energies of the first seven BM levels in the
S = —,

' nearly Heisenberg ferromagnetic chain compound
(C6H||NH3) CuC13 [cyclohexylammonium trichlorocu-
prate (II) (CHAC)]. Until now there has been no
experimental study of the eN'ects of BM's on thermo-
dynamic properties.

In order to investigate the efI'ects of BM's on the mag-
netic susceptibility of quantum spin chains we have mea-
sured the differential susceptibility of CHAC as a func-
tion of temperature from 4.2 to 40 K in magnetic fields
of 0, 1, 2, and 3 T, and fitted our data to the Johnson
and Bonner (JB) theory for the S= z, ID, HIF. The
data and theoretical fits are plotted as X vs T in Figs.
1(a)-1(d), with data points shown as solid circles and
fits to JB theory shown as solid lines. Relative errors in
these measurements are less than or equal to the circle
radius, and theoretical fits are visual best fits. Also
shown, as dashed lines in Figs. 1(b)-1(d), are the JB
theory BM and SW contributions to the susceptibility.
It is immediately apparent that JB theory semiquantita-
tively fits the data, confirming the existence of BM's in
CHAC. Further, it '. s clear that BM's dominate the sus-
ceptibility and that SW excitation alone cannot account
for the observed values.

The sample consisted of 70.0 mg of CHAC powder in
a frozen mineral-oil matrix. DifT'erential susceptibility
measurements were performed with use of a mutual-
inductance bridge which utilizes a SQUID as a null
detector. The amplitude of the excitation field used was
less than 0.25 Oe, and its frequency was 80 Hz. No re-
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v tern erature in fields of 0, 1, 2, and 3 T. Data are indicated byFIG. 1. D A' ntial magnetic susceptibility of CHAC powder vs tempera ure in

i k =78 K =0.973, =2.15. (aj H=Oretical fits b lines. Solid lines are the Johnson and Bonner susceptibility for Jg k =, g . , g=
5 K =2.15. (b)-(d) H=l T to H=3 T. Dashed lines are theT. Dashed line is the Baker et al. HTSE susceptibility for J/k =55 K, g=

bound-magnon (BM) and the spin-wave ( contri u ions o e(SW) b t' t the Johnson and Bonner susceptibility, for the same parameters as
the total susceptibility.

laxation eA'ects were observed. Although use of a
single-crystal sample would have made interpretation of
the data more straightforward, the powder clearly
displayed the predicted behavior, and a sufficiently large
single crystal was not available at the time when the ex-
periments were done. Diamagnetism and temperature-

20independent paramagnetism in CHAC are more than
2 orders of magnitude smaller than the total susceptibili-
ty in this temperature range, and nearly cancel each oth-
er, so that corrections for these eff'ects were unnecessary.
Measured susceptibilities were small, and the calibration
standard was approximately the same shape as the sam-

pie, so that no correction for demagnetization was re-
quired. Crystallographic and magnetic structure studies
of CHAC ' ' have established it as one of the best
S = —,', quasi 1D, nearly Heisenberg ferromagnets
currently available, and as a reasonable model compound
for use in experimental studies. Ferromagnetic reso-
nance measurements by Phaff et a1. show a small22

transverse component in the exchange anisotropy of
CHAC, but the analysis by Hoogerbeets et al. ' indi-
cates that the S= 2, 1D, HIF model sti11 provides a
good representation of this compound's behavior.

The S = 2, 1D, HIF Hamiltonian is given by

ZH 2J ~K' fS''S'+ i 4 + y(S' Sf~+ i +S' S''+ i )] gpBHp ~ S[

where J is the exchange energy, y is the anisotropy parameter, and Hz is p yd H is the ( h sical) magnetic field. The anisotropy
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parameter varies from y=l (Heisenberg model) to @=0 (Ising model). Using a thermodynamic Bethe-Ansatz
integral-equation formulation, JB calculate the low-temperature asymptotic forms of the susceptibility and specific
heat. For the susceptibility they find

I=T exp[ —(6 —1) ' /Tp](4[H /4+ Tp exp[ —(d —1) ' /Tp]] ) '+ (2gcTp) ' exp[ —(6+Hp —1)/Tp]

valid for A=I/y) I and Tp«1. The dimensionless field
and temperature (Hp, Tp) are given in terms of the phys-
ical field and temperature (H~, Tz), the exchange energy
J, and the anisotropy parameter y: Hp=gpBHp/2yJ,
Tp=kT~/2yJ. Parameter values for the JB susceptibili-
ty curves shown in Figs. 1(a)-1(d), including the BM
and SW susceptibilities in Figs. 1(b)-1(d), are J/k =78
K and y =0.973, with the same values used for all fields.
Previous studies have determined the average (powder)

g to be 2. 15, and this value was used for all fits.
For these parameters Tp=(0.00659 K ')Tz, and Hp
= (0.009 51/T)Hq, which gives 0.028 & Tp & 0.26 and
0 & Ho & 0.029 as the dimensionless temperature and
field ranges in our data.

The second term of the JB susceptibility is due to
SW's, single spin flips in a ferromagnetic chain; the first
results from BM's, two or more reversed spins lying on
adjacent lattice sites. Spins within a reversed block of
spins will interact ferromagnetically, thereby lowering
the energy of the chain and giving rise to a state whose
energy lies below bottom of the corresponding SW con-
tinuuni. JB theory predicts that the effective excitation
gap, determined by all possible configurations of spin re-
versals, is a function of anisotropy, field, and tempera-
ture. Depending on the values of (Hp, Tp, y) the eAective

gap will be governed by either SW's or BM's, and a
complex set of crossovers between these two types of be-
haviors exists for both specific heat and susceptibility.
For nearly isotropic systems there are two crossovers,
one from BM to SW domination at low field, and one
from SW back to BM domination at high field. Low-
field crossovers are shown in Figs. 1(b)-1(d) as the in-
tersections of the BM and SW susceptibility curves.

Since the JB exchange and anisotropy (J/k =78 K,
2.7%) are larger than the values reported in earlier stud-
ies of CHAC (J/k =45-70 K, 1%-2%), we have
fitted our zero-field data with the Baker-Rushbrooke-
Gilbert (BRG) Pade-approximant high-temperature
series expansion for the Heisenberg chain, as was done in

the previous susceptibility study. The resulting fit for
J/k =55 K and g =2.15 is shown as a dashed line in Fig.
l(a). Correlation of this fit to the data is reasonably
good, better than that found with JB theory. However,
the fit and parameters obtained from BRG must be
viewed with caution, since the high-temperature series
expansion is strictly applicable only for J/2kT«1, and
its accuracy depends on the number of Pade approxi-
mants used. More importantly, BRG assume a Heisen-
berg chain and do not include effects due to anisotropy,
whereas all theoretical studies of S = —,

' anisotropic
chains indicate that a small change in anisotropy

dramatically affects thermodynamic properties.
In order to compare the JB susceptibility to our data,

we first attempted to fit the theory to the peaks in the
high-field data, and this analysis gave J/k =70 K,
@=0.985. Correspondence was reasonably good at low

temperatures, but the JB peaks were substantially nar-
rower than the peaks in the data, causing all of the data
above the peak temperatures to fall significantly off the
theoretical curves. To partially normalize peak broaden-
ing caused by the powder sample we next fit the JB
theory to the data at high temperature, where the mea-
sured powder susceptibility and the easy-axis susceptibil-
ity are nearly equal. These fits are the ones shown in the
figures.

The magnitude of our data is smaller than predicted
by JB theory because the measured susceptibility of a
powder consists of an average of easy- and hard-axis
single-crystal susceptibilities. Also, since crystals with a
hard axis oriented along the applied field saturate at a
lower temperature than crystals with their easy axis
oriented along the field, peaks in the high-field data are
broader and occur at a lower temperature than the peaks
in the JB theory.

It is clear from the figures that the JB susceptibility
expression fits the data satisfactorily, confirming that
BM's exist in the S = 2, 1D, HIF. Considering the
correspondence which has been established between
BM's and solitons as well as the study of Hoogerbeets et
al. ,

' who were able to fit the first few BM energy levels
to an envelope soliton model, our results can be taken as
indirect verification of the existence of solitons in this
class of quantum spin chains. The relationship between
quantum-spin-chain thermodynamics and classical soli-
ton thermodynamics has been studied extensively by
Fowler and co-workers (see Ref. 10 and references
therein). Most recently, they have used a thermodynam-
ic Bethe Ansatz integra-l-equation formulation (similar
to that used by JB) to calculate the free energy of the
sine-Gordon model in the classical limit, and find good
agreement with classical transfer integral results, lending
further support to the identification of BM's with soli-
tons. A detailed comparison of our data to an appropri-
ate soliton model would provide a more direct proof of
the existence of solitons in CHAC.

In addition, the data show that SW theory fails in
5= —,', 1D, HIF systems. In Fig. 1(a), for H=O T, the
SW susceptibility curve cannot be distinguished from the
temperature axis. For the higher-field curves displayed
in Figs. 1(b)-1(d) the SW term is quite small, and has
only a broad, weak maximum. The SW susceptibility is
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qualitatively difI erent from the data, and cannot be
made to fit for any values of the parameters. On the
basis of the data for CHAC, the failure of SW theory
would seem to be due not to excitation of too many
SW's, as is commonly assumed in 1D, but rather due to
the presence of BM's, which are the nonlinear excitations
resulting from anharmonic terms in the Hamiltonian.
This conclusion is supported by the work of Taylor and
Muller, who find that SW theory does not correctly give
the T=0 dynamic structure factor of certain 1D systems
which are ordered at T=O. Therefore, it would seem
that SW theory should be suspect in any system for
which BM's determine the eAective excitation gap. The
exact analyses by Wortis and co-workers and Hanus
(for the two-magnon state) indicate that BM's are most-

ly limited to large wave numbers in 3D, but that they do
exist across the whole Brillouin zone in 2D, and can also
be present at zero momentum in 3D if there is sufticient
Ising anisotropy. Finally, we note that although SW
theory is exact for S ~, the Haldane conjecture,
which predicts that half-integer and integer spin chains
have drastically diferent T=O phase behavior, indicates
that the approach to the classical limit may be unexpect-
edly complicated.

The authors are grateful to Professor 3. C. Bonner for
helpful discussions during preparation of the manuscript.
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