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The channel capacity C of a light-wave communication system based on photoevent point-process ob-
servations cannot be increased by use of photon-number —squeezed light. Under a constraint of max-
imum photon rate k,„, the channel capacity C=kmaxi'e is achieved with a Poisson process. On the other
hand, the channel capacity of a communication system based on photon counting can be increased by use
of photon-number —squeezed light. The improvement vanishes in the limit of very small mean counts.

PACS numbers: 42.50.DV

All light-wave communication systems that have been
developed to date make use of Poisson (or super-Poisson)
light. ' For Poisson light, the variance of the photon
number is identically equal to its mean for all values of
the counting time T. Photon-number-squeezed light, on
the other hand, has a photon-number variance that is less
than its mean for all or some values of T. Such light
is intrinsically nonclassical in nature. The earliest source
of unconditionally photon-number-squeezed (also called
sub-Poisson) light exhibited only a slight reduction of the
variance. Stronger photon-number squeezing has been
produced in more recent experiments ' and continuing
developments promise further improvement in the fu-
ture. It is therefore of interest to investigate whether
there might be an advantage to using photon-nurnber-
squeezed light in a direct-detection light-wave communi-
cation system.

There are two classes of mechanisms by means of
which unconditionally photon-number-squeezed light
may be generated. In the first class, squeezed photons
are produced from a beam of initially Poisson (or
super-Poisson) photons This can be ach. ieved in a num-

ber of ways, e.g. , by the use of correlated photon beams
or quantum nondemolition (QND) measurements. ' An
experiment of this kind was recently carried out by Rari-
ty, Tapster, and Jakemen. ' ' Sub-Poisson photons were
generated from the pair of correlated photon beams pro-
duced in parametric down-conversion; one of the twin
beams was used to gate the other beam selectively via
dead-time control ~

The second class of mechanisms relies on the direct
generation of squeezed photons from a beam of initially
sub Poisson excitations -(e.g. , electrons). ' This tech-
nique was first used by Teich and Saleh in a space-
charge-limited version of the Franck-Hertz experiment.

Perhaps the simplest implementation of this principle is

achieved by the driving of a light-emitting diode with a
sub-Poisson electron current. '

In this Letter we show that the channel capacity of a
light-wave communication system based on the observa-
tion of the photoe~ent point process cannot in principle
be increased by the use of photon-number-squeezed
light. On the other hand, the channel capacity of a
photon-counting system can be increased by the use of
photon-number- squeezed light. The channel capacity is
the maximum rate of information that can be transmit-
ted through a channel without error. ' We also provide
an example in which the use of photon-number-
squeezed light produced from Poisson light either de-
grades or enhances the error performance of a simple
binary on-ofI keying photon-counting system, depending
on where the average power constraint is placed.

Consider the transformation of a Poisson beam of pho-
tons (represented by a Poisson point process' N, of rate
p, ) into a sub-Poisson beam of photons represented by a
point process M, of rate X, . The events of the initial pro-
cess N, are assumed to be observable (e.g. , by the use of
correlated photon beams or a QND measurement) and
their registrations used to operate a mechanism which, in

accordance with a specified rule, leads to the events of
the transformed photon process M, . The rate X, of the
process M, is thereby rendered a function of the realiza-
tions of the initial point process N, at prior times, i.e. ,

a, ='k, (N, , ; t'(t).
Several examples of transformations of this kind that

have been suggested for use in quantum optics are illus-
trated in Fig. 1 and discussed below. It is assumed for
simplicity (but without loss of generality) that the vari-
ous conversions can be achieved in an ideal manner.

(i) Dead time deletion: Dele-te all photons within a
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FIG. 1. Several transformations of Poisson photons into
sub-Poisson photons that have been suggested for use in quan-
tum optics.

prescribed fixed (nonparalyzable) dead time r following
the registration of a photon. ' Rarity, Tapster, and
Jakeman '' generated photon-number-squeezed light by
using one of the twin beams produced in parametric
down-conversion to gate photons selectively from the
other beam via dead-time control. Dead-time deletion
could also be used with correlated photon beams pro-
duced in other ways.

(ii) Coincidence decimation: Remove all pairs of pho-
tons separated by a time shorter than a prescribed time
interval r'. This is achieved, for example, in second-
harmonic generation; two photons closer than the
intermediate-state lifetime of the second-harmonic-
generation process are exchanged for a third photon
(which is at twice the frequency and therefore easily
eliminated). '

(iii) Decimation: Select every rth photon (r =2,
3, . . . ) of an initially Poisson photon process, deleting all
intermediate photons. Saleh and Teich' suggested us-

ing correlated photon beams to implement this tech-
nique. In cascaded atomic emissions from Ca, for ex-
ample, sequences of correlated photon pairs (green and
violet) are emitted. The green photons can be detected
and used to operate a gate that passes every rth violet
photon. Decimation control could also be used in con-
junction with parametric-down-conversion photon twins.

(iv) overflow count deletion: The number of pho-
tons occurring in preselected time intervals [0,Tp],
[Tp, 2Tp], . . . , is counted, retaining the first np photons
in each time interval (without changing their occurrence
times) and deleting the remainder. If the average num-
ber of photons in [0, Tp] of the initial process is» np,
then the transformed process will almost always contain
no photons within this time interval. As an example,
Mandel' suggested that if a collection of no atoms in

the ground state are subjected to a brief, intense, in-
coherent excitation pulse, all no atoms will become excit-
ed with high probability; the radiated optical field would

then be describable, to good approximation, by an no-

photon state. Related schemes have been proposed by
Yuen' and by Stoler and Yurke' for use with paramet-
ric processes.

We proceed to illustrate that none of these mod-
ifications can increase the channel capacity of a com-
munication system based on photoevent point-process ob-
servations.

If a constraint is placed on the rate of the initial Pois-
son process p, ~ p,.„, then it is obvious that C cannot be
increased by the modification N, M, . This is simply a
consequence of the definition of channel capacity: It is
the rate of information carried by the system without
error, maximized over all coding, modulation, and
modificarion schemes. Can the modification N, M,
increase the channel capacity if the constraint is instead
placed on the rate of the modified process X, (i.e.,

~i —~max)"
We address this question for an arbitrary self-exciting

point process M, of rate X, (M, ; t '( t). This is a pro-
cess that contains an inherent feedback mechanism in

which present event occurrences are aAected by the pre-
vious event occurrences of the same point process. Of
course, the modified Poisson processes IV, M, intro-
duced above are special cases of self-exciting point pro-
cesses.

An example of a system that generates a self-exciting
point process is that of rate compensation (by linear
feedback) of a source which, without feedback, would
produce a Poisson process. Let each photon registration
at time t; cause the rate of the process to be modulated
by a factor h (r —

r; ) (which vanishes for t ( t; ). In
linear negative feedback the rate is k, =kp —g, h(t —i;),
where Xo is a constant. If the instantaneous photon
registration rate happens to be above the average then it
is reduced, and vice versa. This process is schematically
illustrated in Fig. 1(f) for two adjacent subintervals T|
and T2. Yamamoto, Imoto, and Machida suggested
the use of rate compensation in conjunction with a QND
measurement (using the optical Kerr effect), but it could
be used just as well, for example, with correlated photon
pairs. Dead-time deletion can be viewed as a special
case of rate compensation in which the occurrence of an
event zeros the rate of the process for a specified time
period r after the registration. '

Now consider a communication system that uses a
point process M, (X) whose rate X, (X) is modulated by a
signal X, . The process M, (X) can be an arbitrary self-
exciting point process (e.g. , it can be photon-number
squeezed) which includes processes obtained by the feed-
forward or feedback modification of an otherwise Poisson
process. Neither feedforward nor feedback transforma-
tions can increase the capacity of this channel, as provid-
ed by Kabanov's theorem.

Kabanoi 's theorem. —The capacity of the point-
process channel cannot be increased by feedback. Under
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the constraint X, ~ X,. „, the channel capacity C is

C =k,, „/e.

C =B[n ln(1+ 1/n)+ln(1+n)], (2)

where n is the mean number of counts in T and B =1/T
is the bandwidth. Two limiting expressions emerge:

r

Bn ln(I/n), n « 1,

B ln(H), n )) l. (3)

If an added constraint is applied to the photon counts,
such that they must obey the Poisson counting distribu-
tion, the capacity is further reduced. In that case, the
limiting results analogous to Eq. (3) are

Bn ln(l/n), n « 1,C=
2 B ln(n), n)) 1,

(4)

In the case of photon counting, therefore, an increase in
the channel capacity can in principle be realized by the
use of photon-number-squeezed light. However, in the
small mean-count limit n « 1 (very short T), the capaci-
ty of the Poisson counting channel approaches that of the
unrestricted counting channel, and the advantage of
photon-number squeezing disappears. This is not unex-
pected in view of the result obtained from Kabanov's
theorem for the point-process channel.

The channel capacity provides a limit on the max-
imum rate of error-free information transmission for all
codes, modulation formats, and receiver structures. ' As
such, it does not specify the performance (error probabil-
ity) achievable by a communication system with pre-

When the capacity is achieved, the output of the point-
process channel is a Poisson process with rate X, =A, ,„/e
(the base e has been used for simplicity). The channel
capacity has also been determined under added con-
straints on the minimum rate (dark events) and on the
mean rate. ' A coding theorem has also been proved.

In summary, no increase in the channel capacity of a
point-process light-wave communication system may be
achieved by the use of photons that are first generated
with Poisson statistics and subsequently converted into
sub-Poisson statistics regardless of whether the power
constraint is placed at the Poisson photon source or at
the output of the conversion process. Nor may an in-
crease in channel capacity be achieved by the use of
feedback to generate a self-exciting point process.

These conclusions are valid only when there are no re-
strictions on the receiver structure. The conclusion is
different if the receiver is operated in the photon-
counting regime, in which information is carried by a
random variable n representing the number of photo-
events registered in time intervals of prescribed duration
T (rather than by the photon occurrence times).

The capacity of the photon-counting channel is given
b 13

scribed coding, modulation, and receiver structure.
It is therefore of interest to examine the performance

of a system with specified structure. We consider a
binary on-off keying photon-counting system. ' The in-
formation is transmitted by the selection of one of two
values for the photon rate k„ in time slots of (binary-
digit) duration T The .receiver operates by counting the
number of photons received during the time interval T
and then deciding which rate was transmitted in accor-
dance with a likelihood-ratio decision rule (threshold
test). For simplicity, it is assumed that background
light, dark noise, and thermal noise are absent so that
photon registrations are not permitted when the keying is
OFF (i.e. , false alarms are not possible). Furthermore,
the detector quantum eSciency is taken to be unity so
that system performance is limited only by the quantum
fluctuations of the light.

A measure of performance for a digital system such as
this is the error probability P, . In the simplified system
described above, errors are possibly only when the keying
is ON and 0 photons are received (a miss). For a Pois-
son transmitter, P, is'

P, (Poisson) = —,
' exp( —n), (s)

where n denotes the mean number of emitted photons.
To minimize P„n is made equal to its maximum allowed
value n,, „. This result is now compared with those ob-
tained for photon-number-squeezed light derived from
an initially Poisson source. The outcome will depend on
where the mean photon-number constraint is placed.
Two transformations are explicitly considered: dead-
time deletion and decimation.

(i) Dead time deletio-n: For a nonparalyzable dead-
time modifier that is always blocked for a dead-time
period ~ at the beginning of the counting interval T, the
passage of 0 photons arises from the emission of 0 pho-
tons in the time T —r, independent of the number of
emissions during i. The error probability for this system
is therefore

P, (dead time) = —,
' exp [ —n (1 —r/T) ].

To minimize error under the constraint n ~ n, „, we
take n =n, „. The error is obviously larger than that
for the Poisson channel [Eq. (S)] and so no performance
enhancement can be achieved by use of this modifier. If,
instead, the dead-time modifier is always unblocked at
the beginning of each bit then the passage of 0 photons
arises from the emission of 0 photons in the time T, and
the dead time has no effect on the error rate in this sim-
ple system. Calculations for the unblocked counter in
the presence of false alarms, however, demonstrate that
the presence of deal time always does, in fact, degrade
system performance with such a constraint. Although
the detailed calculations were carried out for electrical
dead time, the results are also applicable for optical dead
time when the photon detection ef5ciency g= 1. On the
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other hand, if the constraint is placed on the mean pho-
ton count rn after dead-time modification (m (m, „), it
can be shown that there exists a value of rn,.„below
which performance is degraded and above which perfor-
mance is improved, relative to the Poisson channel.

(ii) Decimation: We assume that the decimation pa-
rameter r =2 (i.e. , every other photon of a Poisson se-
quence of events is selected) and that the decimation
process is reset at the beginning of' each bit (i.e., the first
photon in each bit is not selected). The error probability
is then

P, (decimation) =
2 (I+n)exp( —n), (7)

which again represents a degradation of performance in

comparison with the Poisson channel (under a constraint
n ( n „„). .In this case, the error rate is increased be-
cause there are two ways for the passage of 0 photons to
arise in the time T: from the emission of 0 photons or
from the emission of 1 photon. However, if the con-
straint is placed on the modified process, then, once
again, there exists a value of m „, „below which perfor-
mance is degraded and above which it is improved, rela-
tive to the Poisson channel.

It is evident from these examples that system per-
formance can be enhanced by the use of photon-
number-squeezed light, provided that the average power
constraint is applied to the squeezed light. No enhance-
ment of system performance emerges in converting Pois-
son photons into squeezed photons when the average
power constraint is at the Poisson source.

Losses have been ignored in the considerations above.
It is important to keep in mind the inevitable random
photon deletion that results from absorption, scattering,
and the finite quantum efficiency of the detector. It is
well known that these deletions will transform a deter-
ministic photon number into a binomial photon-number
distribution, ' which always remains sub-Poisson but
approaches the Poisson boundary as the random deletion
increases. Mandel' has shown that the information
rate per symbol carried by such a counting channel will

be greater than that for the Poisson channel, but will ap-
proach the latter as the photon-detection probability g
approaches 0. We have shown elsewhere that the
performance of a simple binary on-ofI'-keying photon-
counting system, of the kind considered earlier, is also
superior for a binomial source than for a Poisson source,
approaching the latter as g approaches 0.
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