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We consider two models of discretized string theories with an action which depends on the extrinsic
curvature and prove that the string tension vanishes as the coupling strength of the extrinsic curvature
tends to infinity. We discuss the physical properties of the models and argue that they possess a nontrivi-
al scaling limit.
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The bosonic string theory is presumably an ill-defined
theory. This makes regularization of the world-sheet
variables difficult since, by definition, the regularized
string theory has nonnegative mass and hence no ta-
chyon at the critical point, where the continuum limit is
taken.

The string tension does not vanish at this critical
point. ' The absence of scaling of the string tension can
be understood as follows: Near the critical point the
dominating surfaces (at least on the lattice) contain a
large number of spikes with thickness of the order of the
lattice spacing. These spikes can grow and branch
without any suppression since they have small area, but
their entropy is so large that they alone determine the
critical behavior. These surfaces have been called
branched polymers. The "breather" modes, which
should lower the string tension, play no role and the
string tension is essentially equal to the bare string ten-
sion. ' The dominance of the branched polymers and
the nonscaling of the string tension is a healthy theory's
version of the tachyon.

The eAective bosonic string theory coming from a sen-
sible superstring theory should not have these diseases.
Hence, one would expect to be able to find a class of reg-
ularized bosonic string theories which are not dominated
by branched polymers and have a string tension that
scales to zero.

Apparently the only way to suppress the unwanted
branched polymers eAectively is by introduction of a
term which shifts the critical bare string tension to zero.
It is not hard to see that intrinsic-curvature terms will
not do the job, but it can be achieved with an extrinsic-
curvature term if the coupling constant k of that term
tends to infinity as criticality is approached.

The phase diagram in the coupling-constant plane
(P,k), where P is the bare string tension, could a priori

be as in one of the three cases shown in Fig. 1. We will
show that the most natural discretized versions of string
theory with extrinsic curvature lead to the phase dia-
gram of Fig. 1(b). The critical point (P,k) =(0,~) can
be approached in such a way that the string tension and
(with some assumptions) the mass scale simultaneously
to zero.

We begin by discussing the influence of extrinsic cur-
vature for the hypercubic model. The surfaces one con-
siders in this model are made up of plaquettes from the
hypercubic lattice Z" glued together in such a way that
one obtains a planar surface with a number of boundary
components. These are the same surfaces as considered
in Ref. 1 and Durhuus, Frohlich, and Jonsson, where a
precise definition can be found.

The action 2 (S) of a surface S is a special case of the
action considered by Du rhuus and Jonsson, i.e., we
define

where JV(S) is the total number of links in S and A''(S)
is the number of links in S whose adjacent plaquettes are
at right angles or overlapping. The term JV'(S) should

t'C.

FIG. 1. The possible phase diagrams in the (P,k) coupling-
constant plane. The theory is defined on the right-hand side of
t he cri t ical 1 i ne.
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The string tension r(P, K) and the mass m(P, X) are
defined by

r(P, X) = —lim I 'InGp, () L L ),L~ oo

m(p, ), ) = —lim a 'InGpq()o, )', ),

(3)

be thought of as the extrinsic curvature of the surface S.
The corresponding action for random walks is studied in

Ambj@rn, Durhuus, and Jonsson. The loop functions
are defined by

outside the closure of X. We shall refer to 9X as the
critical surface.

Our first result is that has the shape indicated in
Fig. 1(b), i.e. , if (P, (k), k) E ()8, then P, (k) 0 as

This leads very simply to the vanishing of
at the critical point P =0, X = ~, because Gp ) () L L )) exp( —PL ) and so r(P, X) (P. The proof is based
on the following estimate, whose proof is elementary, but
lengthy, and will be given elsewhere.

Lemma: There exists a function f(e), defined for
t.. & 0, and positive constants c' and e", such that

card [S: (IS = ), JV(S) =n, A '(S) ( en)I

f(~)n+o(n) (5)where yL z is a square loop with side of length L lying in
a coordinate plane. yo is any fixed loop, and y, its
translate by a lattice spacings in a coordinate direction.
In Refs, 1, 4, and 5 the existence and various properties
of these limits are established, as well as the existence of
an open convex set % in the (P,k) plane such that the
loop functions are finite in the interior of % and infinite

and c'e! lne! (f(e) ( e "e!lne! for e sufficiently small.
We shall now use the lemma to show that for any

given P & 0 there exists ) (P) such that the loop functions
are finite for k &) (P). It suffices to consider an arbi-
trary loop function corresponding to surfaces with some
fixed boundary ) .

For any e & 0 we have

Gp~() ) =
as =y

w (s) ) ~w(s)

—a(s) +
as=~

x (s) (~z(s)

—A(s) ( y —(p+kE) ~sl+ tx g pn/2+f—(E)n

as=@ n=0
(6)

m'(P(s), z(s))
lcm a.

r(P(s), X(s) )
(7)

In order to prove this, take k ~ 0 and consider the func-
tion f)„(P)=m (P, ) )/r(P, X), which is well defined for
P) P, (X) and zero at P, (k). It is not hard to check that
m(P, X) ~ as X ~. Hence, for a given a & 0, there
exists P(k) such that fq(Ph)) =a. For a fixed X the
number P(X) might not be unique but we can choose the
function X P(k) to be continuous since m and r are
continuous in g. Moreover, P(k) 0 as X

Assuming the existence of the scaling limit of the loop
functions at (P,X) =(0,~), we obtain a continuum ran-
dom surface (or string) theory with a finite renormalized
mass and string tension. This theory is expected to be
nontrivial because of the suppression of branched poly-
mers.

Now choose e & 0 so small that f(e) & P/2 and take k
!larger than e '[P, (0) —P]. Then the right-hand side of

Eq. (6) is finite and the desired result follows.
In Ref. 5 it is shown that if the susceptibility Z(P, k)

~ zdGp g(1 0, y, ) diverges as (p, k) approaches the
critical surface transversely at some point, then (with a
mild extra assumption) the mass m(P, X) tends to zero.
If we take this for granted, there exists, for any a & 0, a
path [0,~) 8, s (P(s),k(s)), converging to (0,~)
such that

A(S ) =Pg, , (x; —x, )'+Xgk, (1 —cosoi, i), (8)

where i and j denote nearest-neighbor pairs of vertices in
the triangulation T, x; denotes the coordinate of the ver-
tex i in the embedding space R", k and l denote pairs of
triangles that share an edge, and 01, I is the angle be-
tween the planes of the triangles k and l.

The second term in Eq. (8) is the most naive version of
extrinsic curvature for a piecewise linear surface. It is
scale invariant as is the corresponding quantity for con-
tinuum surfaces.

The loop functions are defined in analogy with Eq.
(2):

We now turn our attention to the model of triangulat-
ed surfaces. '' The model can be viewed as a regulari-
zation of Polyakov's string model, where the integration
over internal metrics is replaced by a summation over
random triangulations. The model has recently been
shown to have a nonvanishing string tension. It is, how-
ever, reassuring that the same cure as we described
above for the hypercubic model also works for the tri-
angulated one.

The model is defined by summing over all planar tri-
angulated (piecewise linear) surfaces with a number of
boundary components. The action for a fixed surface
ST, which is based on a triangulation T, can be written
as

aT=~, U

—~(s,}p(T))~dx) . . dx„e
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where p is a suitable weight factor for triangulations, n is

the number of internal vertices in T, and r)T is its bound-

ary; for more details see Ref. 8 and Ambj@rn et al. '

The string tension and mass are defined as in the hyper-
cubic model by equations analogous to (3) and (4) (for
details, see Ref. 2).

Our first result is a bound on the string tension:

r(p, ), ) c,p, (io)

( ) ) c[/L —kc2xL
( pd/2) —rl& (i2)

where c3 is a constant of order l. It follows that

r(P, X) (c)P+) c2)c+ )cin(c3P ), (13)

from which Eq. (10) follows, since )c is arbitrary.
Further, it can be shown that for d ) 2, there exist

positive constants c4 and c5 such that

p
—d/(d —2) (g (p) ( p

—d/(d —2) (i4)

where ),(P) is the critical line. The lower bound follows
from a refinement of the reasoning above. To verify the
upper bound one must estimate the sum over all triangu-
lations. The basic idea is to integrate successively over
the vertices in a particular order and extract a factor
p / ) / from each integration.

The bounds (10) and (14) imply the following: (I)
The scenario of Fig. 1(b) is realized for d ) 3. (2) Even
though the string tension is probably finite on the critical
line ),(P) for P & 0, it goes to zero as P 0. (3) With
the assumption that the mass scales to zero for finite k
when p p, () ), there exists a path p(k) such that Eq.
(7) is satisfied. The arguments are the same as for the
hypercubic model.

Finally we should mention that in d=2 the critical
line looks as shown in Fig. 1(a). We do not know wheth-
er the string tension scales in this case.

An alternative proposal for a discretized extrinsic cur-
vature term for randomly triangulated surfaces was sug-
gested to us by Kazakov. ' This term is Gaussian in the
coordinates of the vertices of the surface and is given by

Xg (Xk, Xg +Xk X/ )
k, l

(is)

where c) is a constant. To prove (10) take a positive
number K and let TL be a regular triangulation of order
(i.e., number of internal vertices) )cL and with the
boundary yz z. The minimum of the action is obtained
when the points x; are regularly distributed in the plane
of yL L. If we denote this position of the vertices by x;
and expand the action about this minimum, we find

A(ST, ) (c)PL +Pg, (y; —
y, ) +),c2)cL,

where x; =x; +y; and c2 is a constant. The term c)PL
is the minimum of the action and it is easy to see that ci
is of order 1. From Eq. (11) we obtain, by integrating,
the inequality

where the summation is over all neighboring triangles
k, l in a fixed triangulation and al, a2 refer to vertices
common to the triangles k and I while aO refers to the
remaining two.

The phase diagram has the shape shown in Fig. 1(c).
An estimate like (10) can be given for this case, and so
the string tension vanishes on the line p =0, ). & X„while
it is strictly positive on the critical line from p, o to k, .

The reason for the diAerence between this phase diagram
and Fig. 1(b) is of course that the action (15) is not
scale invariant.

We conclude with a few comments. It has been shown
above that two diAerent regularizations of the bosonic
string lead to the same picture, i.e., the existence of a
nontrivial continuum limit, where both the mass and the
string tension scale.

For a fixed k ((~) the hypercubic model belongs to
the same universality class as for X=O under mild as-
sumptions. In particular, we know that the string ten-
sion does not scale. Only if the susceptibility does not
diverge at the critical surface can we avoid that situa-
tion. However, a nondiverging X is essentially
equivalent to a nonzero mass. In the hypercubic model it
therefore would be very peculiar if there were a finite
point (p„k, ) on the critical line in Fig. 1(b) where.(p„~,) =o.

For the triangulated models it is presumably possible
to extend the arguments of Ref. 2 to prove that the
string tension does not vanish on the critical line.

The fixed point at which we take the continuum limit
is the ultraviolet-stable fixed point a=O for the asymp-
totically free coupling constant e =X '. This is the fixed
point around which the continuum string models with ex-
trinsic curvature are expanded. Polyakov pointed out
that there could exist another fixed point at which a
theory of "smooth" surfaces could be defined. The re-
sults obtained here suggest that such a point does not ex-
ist unless one changes the model drastically, e.g. , by in-

troducing negative weight factors for surfaces as Pol-
yakov suggested.

Much remains to be done about the new class of
theories discussed in this Letter. The analytical proper-
ties of the loop functions close to the critical point should
be investigated and the critical exponents determined.
Of extreme interest is of course the question of higher-
mass excitations and, in particular, whether the mass
spectrum exhibits Regge behavior.

Note added. —We have been informed by J. Frohlich
that he has obtained results similar to the ones we have
fou nd for the 1at tice model.
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