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A new perturbative computational scheme for solving quantum field theory is proposed. The interac-
tion term in the Lagrangean is expanded about a free-theory form, the expansion involving powers of
logarithms of the fields. The resulting perturbation series appears to have a finite radius of convergence
and numerical results for simple models are good.
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Perturbation methods have played a central role in the
quest for approximate solutions to quantum-field-theory
models. One can distinguish between two diferent kinds
of perturbation series: a natural expansion, which is a
series in powers of a physical parameter that appears in

the functional-integral representation of the theory, and
an artificial expansion, which is a series in powers of a
new parameter 6, which has been introduced temporarily
as an expansion parameter for computational purposes.
Weak-coupling expansions in powers of the coupling
constant X, strong-coupling expansions in powers of l/X,
and semiclassical (loop) expansions in powers of h are
all natural perturbation expansions. Unfortunately these
natural expansions suffer a number of disadvantages.
Weak-coupling series are divergent and may not even be
asymptotic to the solution of the theory. Semiclassical
approximations also give divergent series, are very diffi-
cult to obtain beyond leading orders, and therefore may
give very poor numerical results. ' The computation of
strong-coupling series requires the introduction of a lat-
tice and the subsequent taking of a continuum limit;
such series are often very slowly converging with many
terms being required to give a reasonable approximation.
The principal difficulty with natural perturbation expan-
sions is that the analytic dependence of the solution to
the theory on the physical parameters is lost; by the
physical constants being forced to play the role of expan-
sion parameters they are no longer available to display
adequately the true functional dependence of the physi-
cal theory on them.

where d is the space-time dimensionality, k is dimension-
less, and M is a mass parameter that sets the dimensions
of the interaction term. We will see that for any n, the
n-point Green's function for the theory in (l) can be
easily expanded as a perturbation series in powers of 6':

G " (xt x2, . . . , x„)= g 6'"gt, " (x), . . . , x„).
0

(2)

We will give a simple procedure to determine the kth

The advantage of artificial perturbation expansions is

that, if a parameter 6 is inserted in a clever way, the re-
sulting series in powers of 6 may be easy to compute and
rapidly convergent. Moreover, the terms in this expan-
sion may exhibit a very nontrivial dependence on the
physical parameters of the theory. One such perturba-
tion scheme is the large-N expansion, where N is the
number of components of a scalar field. In nonrelativis-
tic quantum mechanics large-N expansions are surpris-
ingly successful. For a (% )v theory the very first term
in the large-N expansion defines a nontrivial and renor-
malizable quantum field theory. Also quantum chro-
modynamics at large N displays interesting theoretical
and phenomenological features.

In this Letter we propose the possibility of introducing
an artificial perturbation parameter 6 in the exponent of
the interaction term; that is, we consider a Lagrangean
of the form

Z = —(tip) ~+ —p 2/2+ g~ ~/~(/~M ~ d) s
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term in this series. We will see that in any number of
space-time dimensions the terms in this series are far less

divergent than the terms in the weak-coupling perturba-
tion series. We believe that the series in (2) has a finite
radius of convergence (in a future paper we argue that
convergence occurs for

~
6

~

& 1). With the use of Pade
summation, this series even gives good numerical results
for values of

~
6~ ) 1. Moreover, the Lagrangean pa-

rameters k and p occur in a very nontrivial way in gk" .

Thus we believe that the series in (2) may reveal new in-

formation about such dificult questions in quantum field
theory as whether (p )4 (here 6=1) is free.

It is an attractive feature of the Lagrangean Z in (1)
that the Green's functions have an expansion of the sim-
ple power-series form in (2). However, it is not at all ob-
vious how to find solutions to the nonpolynomial
Lagrangean that results from expanding Z in (1) as a
series in 6:

oo

Z ~

(tlat) 2+ ~

(p 2+ 2gM2)y2+ gM2y2 y [In(y2M2
—d)] k

, k! (3)

We give a combinatorial recipe for obtaining the series in number of (2) in any dimensions of space-time: The
coefficient got"~ (x 1, . . . , x„) of 6 in (2) is merely the n-point Green's function for a free theory in which the mass term
is p2+2XM~. [This is evident from (3).] To compute the coefficients of 6' through 6, we consider a new polynomial
Lagrangean I:

K
z = —' (tip) + —' (p +2RM )p +KM g (P M ) " P

k=1
(4)

P =6+6 P = —6+6 (7)

for K =3,

P, =a+ —,
' (I+a, )S'+S',

P2=8ai+ —,
' (co +a2)8 +8,

P3 =Geo + 2 (ai+a3)6 +6,

Here, al, . . . , ak are initially regarded as integers; Pk
are polynomials in el, . . . , eK, they are polynomials of
degree K in the perturbation parameter 6, and they have
at least one power of 6 (see below). In this new theory
we must compute (using ordinary weak-coupling di-
agrammatic techniques) the n-point Green's function
G " (x, . . . , x„) to order 6 . Then we apply the deriva-
tive operator D given by

1
+ +

exp[2zci(k —1)j/K]
itj=l k=1

to G (x~, . . . , xk. ) and evaluate the result at al =aq(n)

= . . - =eK =0. In this diA'erentiation we can no longer
consider the parameters a; as integers; thus, the series in

(2) is generated from derivatives of the theory specified
by Z in (4) at the point where this theory is free. Note
that, in eAect, this recipe reduces the problem of finding
the nonperturbative series in (2) to that of solving the
polynomial Lagrangean I by standard weak-coupling di-
agrammatic techniques. Moreover, only a finite number
of graphs are required: To obtain the series in (2) to or-
der 6, only graphs having up to K vertices are required.

It remains only to specify the polynomials Pk in (4).
The first few polynomials are given below. (The pro-
cedure for finding Pk is given in Ref. 7.) For K= I, we
have

Pl =6;
for K =2,

where co =e
To illustrate the perturbative computational procedure

outlined in this Letter, we examine three cases: d =0,
d =1 (quantum mechanics), and the large-iV limit.

Case d =0.—Consider the zero-dimensional field
theory whose vacuum-vacuum amplitude Z is given by

dx („~)|+s
J (9)

The integral in (9) evaluates exactly to

2 3+26
2+26 (10)

= —'6y( —') —&'[ —' y( —')+ —' y'( —')]+ (l l)

where y(x ) = I '(x )/I (x ).
This power series is rapidly convergent for

~ 6~ & l.
However, for all values of 8 outside the range —3/2
& 6 & —1, ~ 6~ ) I, superb numerical accuracy is ob-

tained if the series in (11) is converted to a Pade ap-
proximant: The exact value of E(1)= —0.0225104. A
(3,2) Pade approximant gives —0.02252 and a (5,4)
Pade approximant gives —0.022 5103.

To compute the terms in the series (11) with use of
the recipe given in (4)- (8) is straightforward. We
merely sum the connected vacuum bubble graphs corre-
sponding to the Lagrangean Z in (4) and apply the

Thus the free energy E(6) = —W= —InZ is clearly an
analytic function of complex 6 for

~
6~ & l. (The singu-

larities in the 6 plane lie on the negative-6 axis between
6= —3/2 and 6= —1, with an accumulation point at
6= —1.) The expansion of E(6) directly as a series in

powers of 6' gives

E(S)
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operator D in (5). For example, to order 6 we have a
theory with two vertices. The Feynman rules are (i) 2

for a line; (ii) —(8+6 )(2a~)! for a one-vertex; (iii)
(6 —6 )(2a2)! for a two-vertex. The graphs that con-
tribute to E(6) are shown in Fig. l.

Case d=l.—Now consider the quantum-mechanical

H amiltonian

H= ——'d /dx + —'M x (x M) (i2)

For this Hamiltonian we have calculated the series in (2)
corresponding to the ground-state energy Eo(6) to order

Eo(6) = —,
' M+ —,

' 6My( —', )+ —„', 6 M[ —y" ( —', ) —8y'( —,
' ) in2+8y ( —', ) —16@(—', )+32 —321n2]+0(8 ).

Note that the structure of this series is very similar to that of the series in (11). We have calculated the series in (13)
in two independent ways. First, we used the recipe described in this paper; second, we used standard Rayleigh-
Schrodinger perturbation theory. The series gives excellent numerical results when

~
8

~
( l.

Large Nappro-ximation We .t—reat the Lagrangean L in the large-N approximation by replacing P with the N-
component field %; we then consider the new Lagrangean

L„=—'(ti+)'+ —, p'@'+KM A (M e /N)' (i4)

In the limit N ~ with X and M fixed, a variational calculation that employs a trial Gaussian ground-state wave
functional gives the exact solution to the theory. This solution can also be obtained by a set of graphical rules (sum-
ming only "cactus" graphs) which may be derived from saddle-point expansion of the functional-integral representation
of the vacuum-vacuum amplitude.

The pole at p =mg in the two-point Green's function is exactly calculable in the large-N limit. We compare the re-
sults for m~ obtained in two difIerent ways. First, m~ is determined implicitly by our obtaining the exact gap equation
in the large-N limit. This gap equation (in which we have set N =1) is

m' =i"+2) M'(S+ i)(I M' ')'-
where IR =fd p(p +m~) '. Expansion of this implicit solution for m~ as a series in powers of 6 gives

mg =p +2XM +216M 1n(eil)+8 [XM In(I|) ln(e I~) —4A, M I2ln(eI~)/I|]+

(is)

(i6)

where
'" 'J" 'p p'+p'+ ')

(b)

FIG. 1. Graphs contributing to E(8) to order b2. There are
two graphs of type (a): one has vertex 1 and al self-loops, and
the other has vertex 2 with a2 self-loops. There are three
classes of diagrams of type (b): one class has two vertices of
type 1, one class has two vertices of type 2, and the third class
has a type-I and a type-2 vertex. The graphs of type (b) must
be summed on the number of lines joining the vertices. For ex-
ample, the class of graphs having mixed vertices has 2p lines
connecting the vertices, a[ —p self-loops on the vertex of type
l, and a2 —p self-loops on the vertex of type 2. The total am-
plitude is obtained by summing on p from 1 to min(al, a2).
The details of the calculation are given in Ref. 7.

Alternatively, we can use the graphical rules for the
1/N approximation to obtain the terms in the 6 series in

(16). That is, we sum just the "cactus" graphs arising
from the large-N generalization of (4) and apply the
derivative operator D in (5). We have verified so far
that the resulting series in 6 is identical to that in (16) to
order 8 . (The detailed calculations for the two-, four-,
and six-point Green s functions are given in Ref. 7.)
Thus the process of expanding in powers of 6 commutes
with the 1/N approximation (and also commutes with
the process of expressing the two-point function in terms
of one-particle graphs).

Note also that the terms in the series in (16) are much
less divergent than those in the unrenormalized weak-
coupling expansion: Let A be the large-moment cutoff'.
In the usual weak-coupling series there are terms that
diverge like A and lnA when d=4. As one can see, in
the 6 series the corresponding terms diverge like lnA and
in(lnA). We believe that the 8 series in (2) for the
Green's functions is renormalizable, order by order in
powers of 6. The renormalization procedure is discussed
in Ref. 7.
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surely complicated, function of a. Its weak-coupling expansion
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pends on the parameter a when a is not small.
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