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ERRATUM

Resistance Fluctuations in Thin Bi Wires and Films.
D. E. BEUTLER, T. L. MEISENHEIMER, and N. GIOR-
DANO [Phys. Rev. Lett. 58, 1240 (1987)].

The filled circles in Fig. 2 are data for the wire sample
and correspond to the right-hand scale, while the open
circles are for the thin-film sample and correspond to the
left-hand scale. The terms “open’ and “filled”’ were mis-
takenly interchanged in the printed version of the cap-
tion.

Perturbative Stability of Smooth Strings. ROBERT

D. PisarskI [Phys. Rev. Lett. 58, 1300 (1987)].

The correct condition for the perturbative stability of
smooth strings is that the number of dimensions be posi-
tive and less than or equal to thirteen.

Originally, the conformal anomaly for the massless
mode was properly treated, but that for the massive
mode was overlooked. The inclusion of all terms that
arise when a regulator is introduced, then removed by re-
normalization, adds (sgnd)(+1—P/6) to the previous
result for A "'(p,p). Equation (7) should read
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A~ Hp,p) ~sgnd

as P— oo, The characteristic equation for three of the
four eigenvalues of A ~!is then

p3—(cP+1)y2+ $In2(P)y —#ln%P) =0, (10)

up to terms that are negligible at large P. The constant
c=013—4d)/3d.

When ¢#0, the solutions to Eq. (10') remain those of
Eq. (11), and so the theory is perturbatively stable for
0 <d <13, and unstable for d > 13.

In thirteen dimensions, ¢ vanishes, and the solutions to
Eq. (10) are
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Since the real part of each eigenvalue is positive, the
theory is perturbatively stable when d =13.

At large d, including terms due to the conformal
anomaly, about zero momentum the massive mode does
not contribute to A ~'(p,p) until ~P? (remember P is
momentum squared). Hence as P—0, A !'(p,p)
~ —P/6+0(P?). This is precisely the result expected
if the infrared limit for A "!'(p,p) is given by the usual
Liouville action to ~p% ~(26—d)/6dP~ —P/6 at
large d. This agrees with Forster, Polyakov, and David,
whom [ mistakenly contradicted.

A simple picture emerges for the effective action
which describes fluctuations in g,

S(p) =Serlp, = 1106%) — Se(po, — iro5%).

About zero momentum up to terms ~P2 S(p) is the
standard Liouville action, ~(26—d)P. At large
momentum up to corrections ~1, S(p) is again a
Liouville-type action, but now it is proportional to
(26 —2d)P. The difference arises because to ~ P about
zero momentum, only the massless mode contributes to
S(p), while to leading order at large momentum, the
massless and massive modes contribute equally.

The significance of these Liouville actions must be
qualified. If mixing between the p and 2 fields were ig-
nored, S(p) would produce logarithmic divergences at
both large and short distances, beyond the usual ultra-
violet renormalizations of the couplings. Since the full
action involves terms ~ A%, Eq. (5), this mixing cannot
be ignored. For example, consider the two-point func-
tion of g, Alp,p). If only S(p) mattered, Alp,p) ~1/P
at both large and small P. Because of the mixing,
though, at large P and for any d, A(p,p) ~1/PIn%P; e.g.,
this renders {52 ultraviolet finite. About zero momen-
tum, A(p,p) can be computed (with apologies) at large
d; as asserted before, usually Ap,p) is finite at P=0,
with the 5 and A% fields acquiring a common mass gap.

I am most grateful to Frangois David and Siddhartha
Sen for pointing out my omission of the massive con-
formal anomaly. Fermilab is operated by Universities
Research Association under contract with the U. S.
Department of Energy.



