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Novel Type of Phase Transition to Incommensurate Structure in Quartz and in Berlinite
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It is shown that the P-incommensurate transitions which take place in quartz at Ts=8.46 K and in
berlinite at T&=870 K are of a novel type which has recently been discussed theoretically. This transi-
tion has features in common with both instability and nucleation types. The wave vector q of the incom-
mensurate phase rotates continuously away from the symmetry axis as the temperature is lowered below
Ts. Renormalization-group and scaling arguments are presented, suggesting that the perpendicular
component of the wave vector should vary as q& —t", where t =(Ts —T)/Ts and v is the critical ex-
ponent associated with the correlation length.

PACS numbers: 64.70.Kb, 05.70.Jk, 61.50.Ks

Continuous phase transitions leading to incommensu-
rate structures have been classified into two main
types': (a) instability and (b) nucleation. Instability-
type transitions usually take place when a disordered
phase becomes incommensurate. Such transitions are
characterized by a small local order parameter P(r)
whose thermodynamic average vanishes in the disordered
phase. Below the transition a certain Fourier component
P(q) of the order parameter with qAO becomes nonzero,
thus breaking the translational symmetry. In continuous
transitions P(q) grows continuously as the temperature
is lowered below the critical temperature T~. In addi-
tion to the fundamental Fourier component P(q), one
usually finds that higher harmonics P(nq), n & I, be-
come nonzero as well. However, the structure of the in-
commensurate phase is such that the ratios P(nq)/P(q)
vanish as the transition temperature is approached from
below. Another characteristic feature of this type of
transitions is that they are characterized by a diverging
susceptibility.

On the other hand, nucleation-type transitions, which
usually take place when a commensurate phase becomes
incommensurate, are not associated with a small order
parameter. They are, rather, described by a condensa-
tion of discommensurations or domain-wall structures.
As the transition is approached, the average distance be-
tween discommensurations diverges, resulting in a con-
tinuous transition to an ordered commensurate state.
The structure below the transition is periodic and is
characterized by a fundamental Fourier mode P(q) and
its harmonics. However, since the incommensurate
phase is composed of arrays of domain-wall-like struc-
tures, the ratios P(nq)/P(q) do not vanish as the transi-
tion is approached from below. Moreover, unlike
instability-type transitions, here q 0 at the transition
and there exists no diverging susceptibility associated

with P(q). Recently it has been pointed out that a new
class of transitions exists, which has properties of both
instability and nucleation types. In these transitions the
incommensurability is driven by a gradient cubic term in
the free energy. They are associated with a small or-
der parameter and have a diverging susceptibility as do
instability-type transitions. However, they are charac-
terized by an infinite-wavelength structure and a non-
trivial harmonic content at the transition, as is common
in nucleation type. The existence of such transitions has
been suggested on the basis of theoretical analysis of a
certain Landau-Ginzburg-Wilson (LGW) model. No
specific physical system in which such transitions take
place has been found.

In the present Letter we suggest that the P-
incommensurate transitions which take place in quartz
(SiOz) at T~ =846 K and in berlinite (AIPO4) at
T~=870 K are in fact of the new type. These transi-
tions have been studied extensively in recent years.
To be specific we consider here the transition in quartz;
however, our analysis will also apply to berlinite. Quartz
exhibits three phases at temperatures around T=846 K:
a hexagonal D6 (P6z22) P phase which exists at
T) T~=846 K, an e phase at T & T~=T~ —1.8 K
which has a threefold symmetry D3 (P3~21) (see Fig.
1), and an intermediate incommensurate phase which ex-
ists in the narrow temperature interval T~ & T & T~.
This incommensurate phase is characterized by a wave
vector q which at the transition temperature T& points
along a symmetry axis in the x-y plane [see Fig. 2(a)l.
One of the interesting features of this transition is that
as the temperature is lowered below T~, the q vector ro-
tates in the x-y plane away from the symmetry axis.
This behavior has been observed experimentally by elec-
tron microscopy' ' and by x-ray diff'raction studies, '

and discussed theoretically with use of Landau theory'
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FIG. 1. Basal-plane projection of the position of the silicon
ions in quartz. The circles indicate the positions in the P phase
while the arrows give the directions of the silicon displacements
in the a phase.

FIG. 2. The three q vectors associated with the order pa-
rameter of the incommensurate phase (a) at the transition
point Ts and (b) for T & Ts Below t.he transition point the q
vectors are rotated in the x-y plane away from the symmetry
axes.

and domain-wall-type arguments. ' Here we present
scaling and renormalization-group arguments suggesting
that close to Tz the component of q perpendicular to the
symmetry axis should vary as q& —r", where r =(Ts
—T)/Ts and v is the critical exponent associated with
the correlation length.

To study the P-incommensurate transition we con-
struct the LGW Hamiltonian associated with this sys-
tem. Let g be the order parameter of the a phase. This
is a single-component Ising-type order parameter which
represents the distortion given in Fig. 1. The intermedi-
ate incommensurate phase is characterized by a modu-
lated a-type distortion. At the transition the modulation

vector points along one of the symmetry axes in the x-J
plane. The order parameter for the P-incommensurate
transition has therefore six components p+-q, i =1, 2,
and 3, where the wave vectors q; are given in Fig. 2(a),
and g ~ q are the ~ q; Fourier components of the order
parameter rl(r). For simplicity we denote rl ~~. by r) ~;.
Since the order parameter g(r) is real, one has g
where q,

* is the complex conjugate (c.c.) of tl;. The
LOW eA'ective Hamiltonian associated with this order
parameter takes the form '

iY =„dVH(rl;, Vtl;),

with

0=—«& Ig, ! + —a g!vq;! + —w[(x, vq, )q, q, +(x, vq, )z,zt+(x, Vq, )qtq, +c.c.]
1 p 1

i=i i =1

3
'2

3

where I, are unit vectors pointing along ixq;, respec-
tively, i =1, 2, and 3, and z is a unit vector along the z
axis. This LGW Hamiltonian has the basic features as-
sociated with the new class of transitions discussed previ-
ously. Namely, it does not possess a Lifshitz-type term
which is quadratic in g and linear in the V operator, and
the leading cubic term in g is linear in V. Note that the
w term is invariant under the space group D6. It is

clearly invariant under the sixfold axis. It is also invari-
ant under the twofold axes in the x-y plane. Within the
mean-field approximation, the ordered phases associated
with this model are obtained by our minimizing the
Hamiltonian with respect to tl;(r). Two kinds of ordered
phases are found: a single-q structure in which, say,
! gl! e0 but F2 =@3 =0, and a triple-q structure charac-
terized by q;&0, i =I, 2, and 3. The («, w) phase dia-
gram associated with this model is given in Fig. 3. For
t. )0 the model exhibits a triple-q structure. However,
for v (0 one finds both ordered phases: a single-q phase

! for w (!t ! and a triple-q phase for x ) ! t ! . The two
phases are separated by a first-order line.

The transition from the P to the triple-q phase is of the
type which has recently been discussed theoretically. It
is characterized by a small order parameter g; and
diverging susceptibility, as in ordinary instability transi-
tions. On the other hand, as a result of the w term which
tends to favor nonzero I; Vg;, the q vectors associated
with the order parameter rotate continuously below the
transition. ' ' Let the modulation vectors below the
transition be q;+ k;, where the vectors k; are perpendicu-
lar to q;, i =1, 2, 3, respectively, and they all lie in the
x-y plane. The order parameters associated with these
wave vectors will be denoted by g; k. . Within the mean-
field approximation, the vectors k; are found to satisfy

(2)
It has been suggested that usually, in this class of phase
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transitions, the structure of the low-temperature phase should exhibit nontrivial harmonic content. This would mean
that higher harmonics of the order parameter r); „k., n & 1 (i.e., Fourier components associated with q;+nk;), should
become nonzero with nonvanishing ratios r); „k./g; q. at Ts. However, because of the particular structure of the model
(1) this is not the case here, and higher harmonics vanish identically below Ts. To see that this indeed is the case one
should consider the Euler-Lagrange equations of the model (1). They take the form

3

rq;+4u g ~ qj ~
t);+4~

~ q; ~

'q, —a~'q;+ w~(q;+z ~rl*+i)rl*+z (q +i ~r)*+2)r)*+i~ =0
2g= 1

(3)

where q; is a unit vector along q, , and in the last term
the indices i +1 and i+2 are taken modulo 3. These of the (q;(0)r);(r)) correlation function. One finds
equations have an exact solution of the form

(p= —,
'

v 4 —d —3r), (6)
q(= j(exp(ikx( r), (4)

It is easy to verify that in this case the structure below

Tq will contain higher harmonics, and that the harmonic
content will be nontrivial at Tq.

We now apply scaling and renormalization-group con-
siderations to study the behavior of the perpendicular
components k; of the wave vectors near Tq. We first
consider the LGW model (1) with w=0. This model is
composed of three A V models which are coupled by an

energy-energy-type term u. The crossover exponent as-
sociated with this coupling is ' a, the specific-heat criti-
cal exponent, which for the XV model in d=3 dimen-
sions is negative. Hence, near the decoupled fixed point
u* =w* =0, u is an irrelevant operator. Moreover, one
can relate the crossover exponent p associated with w to
the critical exponents g and v which govern the behavior

v&O v&O

Wji WING

3-q W

Ts

(a) (b)

FIG. 3. Schematic (T, w) phase diagram of the model (I):
(a) for v )0 and (b) for v (0. Thin lines represent second-
order transitions while thick lines represent first-order transi-
tions.

where g~ are independent of r. This solution does not
contain harmonics other than the fundamental ones. In
general, however, since the Euler-Lagrange equations
are nonlinear, higher harmonics do not vanish. In partic-
ular for vectors q; such that 4q; are reciprocal-lattice
vectors (which is not the case for quartz or berlinite) one
expects an additional term in the LOW model:

(5)

where d is the dimensionality of the system. Since
q=0.05 for the d=3 XV model one has p & 0 and w is

relevant. Therefore if the model (1) has a stable fixed
point in d =3 dimensions, it has to be one with u

and t. *&0. In this case the scaling form of the correla-
tion function is given by

(r);kri; k) —t 'G(kg, u*, v*,w*), (7)

~here y is the critical exponent associated with the or-
dering susceptibility, and g is the correlation length. For
T & Tz this correlation function exhibits a singularity at
some nonzero k. In terms of the scaling variables the k
at which the singularity takes place is given by k(=C,
where C is a constant depending on u *, v, and w*.
Therefore below the transition one has

kg wr ~ or k ——r"

In this case k is expected to vanish with an exponent
larger than v.

In summary, we have demonstrated that the P-
incommensurate transitions in quartz and in berlinite be-
long to a class of transitions which has features in com-
mon with both instability and nucleation types. It is

It is therefore suggested that the perpendicular com-
ponent of the order parameter vanishes as T T~ with
the same critical exponent as that of the inverse correla-
tion length. It would therefore be of interest to measure
the correlation length and compare its behavior with that
of the perpendicular component of the wave vector.
Note that this result is not valid in general. For other
models of the type (1) (e.g. , models which have different
fourth-order terms) the w* =0 fixed point may be stable.
The w term may then become a dangerous irrelevant
variable. In this case the scaling form of the correlation
function is r "G(kg, wt ~), where p is the (negative)
crossover exponent associated with w. The wave vector k
below the transition is given by k(=C, where C is a
function of wt ~. Assuming that this is an analytic
function, and noting that for w =0 the k vector vanishes,
one finds that below the transition k is given by
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shown that the q vector associated with the incommensu-
rate phase is expected to rotate belo~ the transition, and
that the perpendicular component of q should vanish at
Tq as t . This result is valid provided the transitions in

quartz or in berlinite could be established to be continu-
ous. It would be of interest to study the correlation
length in these systems and compare its behavior to that
of the perpendicular component of q.
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