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Stability of Modulated Couette Flow

Thomas J. Walsh, William T. Wagner, and Russell J. Donnelly
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(Received 23 March I 987)

The stability of modulated Couette flow is studied by modulation of the angular velocity, 0, of the
inner cylinder according to 0 =0[1+ecos(cot)], where 0 is the mean angular velocity of rotation. co is
varied for several radius ratios, and e is varied for one radius ratio. The results are compared to earlier
experimental and theoretical results.

PACS numbers: 47.20.Ft

The stability of modulated hydrodynamic systems has
attracted increasing attention during the past several
years. Much theoretical and experimental work has
been done on modulated Benard convection ' and
modulated Couette flow, ' as well as more general un-

steady flows. ' These problems are important since the
unmodulated Benard and Couette systems are widely
studied, and because of the occurrence of modulated hy-
drodynamics in nature, e.g. , blood flow in the circulatory
system and the diurnal heating and cooling of planetary
atmospheres. The particular Couette-flow problem of a
stationary outer cylinder and sinusoidally modulated ro-
tating inner cylinder described by 0 = 0[1+ecos(tot)]
was first investigated by one of us. ' The data were in-
terpreted to indicate that under certain conditions modu-
lation stabilizes the flow, a result which conflicted with
subsequent theories. " ' For this experiment stabiliza-
tion or destabilization is characterized by the value of
0„ the mean angular velocity of the inner cylinder at
which Taylor vortex flow begins. Donnelly used an elec-
trochemical technique to measure the radial component
of Taylor vortices, u„and took as his critical angular ve-

locity that which corresponded to a change in the rate of
growth of u, from linear dependence on 0 to a Landau-
law dependence in which u, is proportional to (0
—A, ) 't . He stated, however, that transient vortices,
which appeared and disappeared during a modulation
cycle, were present for a range of values of 0 less than

A linear dependence of u, on 0 followed by a
square-root dependence has been explained by Hall. '

Theories predict the onset of Taylor vortex flow which
may occur at any point in a modulation cycle, and which
may be transient. We have performed the current exper-
iment to examine the details of the onset of transient
vortex flow. Since there has not been complete agree-
ment among diferent theories or between theory and ex-
periment, we have considered it a matter of high priority
to conduct a decisive experiment.

In this Letter we describe a pew modulation experi-
ment utilizing knowledge of the importance of ramping
rate and employing better control and electronic detec-
tion methods than have previously been used. A diagram
of the apparatus is given in Fig. 1. A Hewlett-Packard
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FIG. 1. Diagram of the apparatus for the modulated
Couette experiment.

model 3325A synthesizer/function generator is set by
computer to ramp its dc and ac output voltages with a
given frequency and e at a predetermined rate. This sig-
nal is sent to a voltage-controlled oscillator which drives
a Superior Electric model 061-FD-312 stepping motor.
Both the inner cylinder (shaded) and a Dynamics
Research model C152 optical encoder are connected to
the motor. The encoder outputs 1000 pulses/revolution
to a Hewlett-Packard model 5328A universal counter,
which determines the mean rotation rate 0 by integrat-
ing over an integral number of modulation cycles and
outputs this value to the computer. The inner and outer
cylinders are kept in a water bath whose temperature is
controlled by a Neslab Endocal model RTE-8 refrigerat-
ed circulating bath (not in diagram). The cylinder bath
is stirred continuously and the temperature maintained
to within 0.01'C over its entire volume. The tempera-
ture, measured by a Hewlett-Packard model 2804A
quartz thermometer, is important in determining the
viscosity.
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FIG. 2. Results of run for ri =R1/R2 =0.88, e =0.5,
cu =3.142 rad/sec. Data corresponding to increasing Taylor
number are indicated by the line with dots. Data for decreas-
ing Taylor number are indicated by the plane line. Note that
T, was recalculated when the viscosity was recalculated (see
text). V;, Vf, and V, are the reflectances before transition,
after transition, and at critical, respectively. The drop from V;

to Vf corresponds to about 20% of the magnitude of V;.

The working fluid is typically 35% glycerol, 4% Kal-
liroscope rheoscopic fluid, 1% stabilizer, and 60% dis-
tilled water. Viscosity measurements are made, by use
of Cannon-Fenske viscometers No. 50 and No. 100, at
two temperatures very close to the temperature at which
the experiment will be run. A linear fit to these values is

used to determine small changes in viscosity due to tem-
perature drift recorded during the experiment, so that we
can calculate the Taylor number, N-r , =20. Rld /v,
where 8 is the mean angular velocity of the inner
cylinder, Ri and R2 are the cylinder radii, d=R2 —Ri,
and v is the kinematic viscosity. The viscosity measure-
ments which are made before and after the experiment
may differ by as much as 1%, but the results of our ex-
periments are repeatable over a period of weeks. This
implies that changes in viscosity, which result from the
experiment, occur very soon after the fluid is put into the
annulus, and that the viscosity of the fluid during the ex-
periment corresponds to the measurements taken after
the fluid is removed from the apparatus. The final
viscosity measurement is used in the analysis, and T, is
recalculated accordingly.

The onset of Tayor vortex flow is detected by a Texas
Instruments model TIL139 source and sensor assembly,
which emits an infrared beam that is reflected by Kal-
liroscope flakes' in the fluid and detected by a photocell.
The flakes are 6x30x0.07-pm guanine platelets. In
laminar flow they align broadside to the detector, and
give a high reflectance of the infrared beam. When vor-
tices appear the flakes acquire a new orientation and the
reflectance, which is averaged over an integral number of
modulation cycles, drops dramatically. Figure 2 shows
the change in average reflectance signal, at the onset of

Taylor vortex flow, which is measured as a function of
Taylor number. We record the value of reflectance be-
fore and after the transition, and take as T, the value
corresponding to a 10% drop in reflectance from its
upper to its lower value. In some runs the upper or lower
value is somewhat unclear, and this uncertainty is

reflected in our error bars. Other contributions to error
are uncertainty in the viscosity, uncertainty due to
differences in T, when runs are repeated, and the
difficulty in interpolating the NI.„at which the critical
reflectance occurs.

A number of checks were made on the functioning of
the apparatus. 6 was visually measured over an integral
number of modulation cycles. Agreement between elec-
trical and visual measurements was within 0.2%. T, was
also verified visually.

There is a small distortion in the modulation wave
form. During a modulation cycle the maximum 0 is at
most 0.3% greater and the minimum 8 at most 0.3% less
than they would be if the wave form were a perfect sine
wave. The detector was generally placed close to the
middle of the annulus. Several runs were made with the
detector at different locations. It was found that results
changed only when the detector was more than 4 of the
way from the middle to one end of the annulus. Mea-
surements were made for a range of aspect ratios,
I =I /d, where I is the height of the annulus. For
tI =R1/Rq =0.719, I was varied from 32. 14 to 32.87, for

g =0.95, I was 167.95, while for g =0.88, I was varied
from 58.4 to 69.31. These changes in I caused no
detectable change in the measured T, .

The abruptness of the transitions was explained in the
following way. When the vortices first appear, they are
present for only part of a cycle, i.e. , they are transient
vortices. It takes the Kalliroscope flakes some time to
reorient to the laminar flow, however, and if the period
of modulation is less than this time an image of the vor-
tices, which we call a ghost, remains after secondary flow
has ceased. A measurement of the time it takes for this
ghost to disappear was made without modulation for

g =0.95 by discontinuously lowering Nq, from 3762 to
3191, i.e. , from the Taylor vortex regime to the laminar
regime. It took 9 sec for reflectance to rise to its saturat-
ed value. With the other radius ratios shear in the an-
nulus was less and it took even longer for the flakes to
realign. The detected transition is, as a result, abrupt
and unmistakable.

Two phenomena may compete to move the detected T,
away from its theoretical value. The first is the pumping
of Taylor vortices by the Ekman vortices at the ends.
This tends to lower T, from the value it would have with
infinite cylinders. Within the limits given above, howev-
er, changes in I have a negligible effect on measured T, .
The second is the limit of any detection system. The in-
stability must grow to finite size to be detectable. This
moves the measured T, to a higher value.

Park, Crawford, and Donnelly have reported on the
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FIG. 3. Critical Reynolds number, R, = 11,R|d/v, as a func-
tion of y=(d cu/2v)'i for a=0.5, t)=0.719 (plusses), r)=0.88
(lozenges), and t) =0.95 (crosses); and for t. =0.2, r) =0.719
(squares). Cubic splines are fitted to the data. Horizontal
lines on the sides of the graph indicate critical Reynolds num-

bers for no modulation for each value of r) (see text).

importance of ramping rates in Couette experiments. '

In our experiments we took measurements while holding

NT, constant, quasistatically ramping between measure-
ments. After surpassing T, we quasistatically decreased
NT,. and repeated our measurements. If we ramped too
quickly, hysteresis resulted, its magnitude increasing
with ramping rate. Following Park et al. we adopted a
dimensionless ramping rate a* =(Rid L/v )*(de/dr).
Our method put an upper limit on a*, since it set ramp-
ing rate between measurements exclusive of the time
spent making measurements. A typical upper limit for
a* was 6.

Our results resemble the predictions of Carmi and
Tustaniwskyj, ' and so for consistency we convert T, to
critical Reynolds number, R, = Q, R|d/ v = (T,/2) '/2.

Runs were made with three diAerent inner cylinders:

g =0.95, 0.88, 0.719, R2 =2.54 cm. For each inner
cylinder a run was made without modulation, and several
runs were made with diAerent values of co for a given t..
Critical values are plotted as a function of y
=(d co/2v) '/ =d/6, where 6 is the Stokes layer thick-
ness. Figure 3 shows our results for three radius ratios
with a=0.5 and one with t. =0.2. The solid lines on the
sides of the graph give the critical Reynolds numbers
for no modulation, R, (r) =0.719) = (51.02+ 1.2)%%u,

R, (r) =0.88) = (44.28 ~ 1.13)%, and R, (r) =0.95)
=(42.2 ~ 1.45)%. Results are qualitatively independent
of g, i.e, , the curves shift with R, . Figure 4 compares
our results for g =0.719, @=0.5, to the results of Carmi
and Tustaniwskyj for @=0.693, a=0.5. In this figure we
have also normalized our values for g =0.719, e =0.5, to
values for g=0.693, t. =0.5, by multiplying all R, by
R,th/R, , where R, ,h is Carmi and Tustaniwskyj's critical
value for no modulation, R, th =52.53. We then rnulti-

FIG. 4. R, as a function of y for g=0.719, a=0.5 before
normalization (plusses), and after normalization and shift in )
(circles) (see text), and Carmi and Tustaniwskyj's theoretical
values (Ref. 14) for r) =0.693, @ =0.5.

plied the experimental y by 4.8. The normalization gives
values that we would expect to get if we used Carmi and
Tustaniwskyj's r), 0.693. Multiplying y by 4.8 (or
equivalently, multiplying ru by 23) places these values on
the curve connecting Carmi and Tustaniwskyj's values.
We see that the qualitative shape of our curve is the
same as that of Carmi and Tustaniwskyj, but that our
results for a given R, are shifted to lower y (equivalent-
ly, for a given y we find a transition at a higher R, ).
This shift may be due to the finite amount of time which
is needed for a disturbance to grow to a detectable size,
i.e. , a longer period than that given by the theoretical y

is required to detect a given R, . It is clear that, accord-
ing to both the theory and experiment, modulation desta-
bilizes the flow, the amount of destabilization depending
on y. In both cases it is found that, at high y, modula-
tion has little eAect on the flow. The disturbance due to
modulation is confined to a small region close to the
inner cylinder, and the bulk of the fluid is unaAected.
For low y the instability is able to grow if the instantane-
ous Reynolds number, N~„exceeds R, for long enough
during the modulation cycle. This can be understood in
two ways. First, a disturbance which can grow in steady
flow at a given N R, will be able to grow in the
quasisteady flow. Second, the modulation-induced
viscous wave, which propagates across the gap, causes a
distortion in the centrifugal gradient which would be
present in the absence of modulation. At slow enough
modulations, however, the wave has very little phase
diAerence across the gap and the centrifugal gradient
which allows growth of an instability is eAectively the
same as it would be at that instantaneous NR, in the ab-
sence of modulation. We therefore see an asymptotic
limit of R, at low y of R, /(1+ e) as predicted by Carmi
and Tustaniwskyj, ' and found by Thompson in his
study of the asymptotic frequency limits.
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A short visual study of the stability against transition
to wavy vortex flow as a function of modulation was per-
formed. Some interesting problems were encountered in

this study. There is no simple signature on a spectrum
analyzer by which one can recognize the appearance of
the wavy mode, since the angular velocity of the waves
varies as the inner cylinder speed varies. In addition,
after the Taylor vortices appear, they shift slightly to
achieve a stable configuration. If the time required for
this stable configuration to be reached is large compared
to the time during which Taylor vortex flow and wavy
vortex flow are present, it is difticult to distinguish the
vortex shift and waves on the vortices. Preliminary re-
sults at low enough frequency indicate that modulation is
destabilizing with respect to wavy vortex flow in the
same way in which it is destabilizing with respect to Tay-
lor vortex flow. The wavy mode is transient and appears
at a lower mean angular velocity of the inner cylinder
with modulation than without.

The authors feel that it would be fruitful to pursue this
course of study for a greater parameter space, particular-
ly for rotation of the outer cylinder with and without
modulation.
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