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Localization of Floquet States in the rf Excitation of Rydberg Atoms
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We study the Floquet states which determine the response of Rydberg atoms to an external rf field.
We discuss the recently observed transition from narrow to broad states and show that the expansion
amplitudes of the bound-space-projected Floquet states on high-n bound states of the unperturbed atom
decay as a power of n. Therefore, even the broad states are marginally localizable. We also derive an
expression for the critical value of n where the transition between narrow and broad states occurs and
use this relation to interpret recent measurements of rf ionization of high-n states in hydrogen.

PACS numbers: 31.60.+b, 05.45.+b, 32.80.Rm

Radiation-induced excitation and ionization of Ryd-
berg atoms is presently the subject of a very intensive ex-
perimental'=> and theoretical >=!! effort. Of central im-
portance for the quantum description of this process is
the determination of the nature of the Floquet eigen-
states.'? In particular, their degree of localization or
delocalization determines the way by which energy is
transferred to the atom. In the localized situation the in-
duced excitation is limited, whereas if delocalized Flo-
quet states overlap with the initial state of the atom, en-
ergy can be transferred efficiently until the atom final-
ly ionizes. Compared with the kicked rotor'3~!'S the
analysis of the Floquet states of the periodically per-
turbed hydrogen atom is complicated by the presence of
the ionization continuum: The Floquet states are gen-
erally not normalizable. However, recent research
work """ indicates that the initial stages of the ionization
process take place within the bound space of the atom
with little participation of the continuum states. There-
fore, a careful study of the bound-space component of
the Floquet states is necessary for a deeper understand-
ing of the ionization mechanism. On the basis of semi-
classical arguments and some numerical data,>® it was
recently suggested that among the bound-space-project-
ed Floquet states there exist both localized and **delocal-
ized” states. Confining our attention to the dynamics of
the one-dimensional model of Rydberg atoms,>'' we
show that for a given driving field the Floquet eigenstates
can be divided into two major categories: (a) states
which overlap mainly with low-n bound states and which
differ very little from the unperturbed atomic states
(narrow states) and (b) states which overlap mainly with
high-n states -and whose expansion amplitudes on the
bound states of the atom decay as a power of n for large
n (broad states). The exponent can take the value — 3
or — % depending on the way one treats the coupling to
the continnum. Because of the power law we character-
ize the broad Floquet states as being “marginally localiz-
able” within the bound space of the atom. The division
of the Floquet states between the two classes sometimes
leaves a finite number of intermediate states which do

not correspond exactly with either class. There is, how-
ever, an important domain of field parameters where the
transition between the two classes is abrupt. This
domain is the one relevant to the recent ionization exper-
iments'~? and will be the main subject of the present dis-
cussion.

We shall derive an approximate expression for the
critical value n, where the transition between the two re-
gimes (a) and (b) occurs, and we will demonstrate its
significance for the explanation of recent experiments of
Koch and collaborators. 2

First, we shall consider the dynamics in the space
spanned by the bound eigenstates of the free atom. This
is the quantum analog of the classical treatment of
diffusion in the action-angle phase space. The connec-
tion between classical diffusion and quantum localization
should be made on the basis of this model which will be
referred to as model B (B for bound). The effects of the
coupling to the ionization channel will be studied by in-
vestigating two approximate and complementary
methods. In the first (method C), we retain the continu-
ous nature of the positive-energy spectrum at the expense
of neglecting continuum-continuum (CC) coupling. '%'¢
In the second approximation (CC) we use a Sturm repre-
sentation,” where the interaction is fully accounted for,
but the continuum is discretized.

An objective measure for the extension of the Floquet
states | ¥ @), when expanded in the basis | n), when ex-
panded in the basis |n) of the bound atom, is the width
function W(n)'":

w(n)
=exp[—Z|<nl\P(")>|Zln(|<n|\l/(")>|2) . (1)

a

It is assumed that ¥ | (x| v@)|2=1. W(n) gives the
effective number of states used in the expansion of the
state |n) in the Floquet basis. We obtain the Floquet
eigenstates by solving the Schrodinger equation

il =[Hy+ V()] 6()) (2)

© 1987 The American Physical Society 2531



VOLUME 58, NUMBER 24

PHYSICAL REVIEW LETTERS

15 JUNE 1987

subject to the boundary conditions
[o@(T))=e “|06@(0)), 3)

where T=2n/w. The Floquet states are the eigenstates
of the one-cycle propagator, and hence I\P(“)>
=0(0)). The corresponding quasienergies are w,.
Addressing the dynamics in the bound space (model B),
we have

(H)pm =—0/20)8pm; V(i) =esinlwr) X 4)

Atomic units are used throughout and X is the position
operator.

The operators Hy and X differ in their dependence on
n. While the eigenvalues of Hy decrease rapidly with n,
the expectation values (n|X |n) increase quadratically
with n. Hence the Floquet eigenstates will display a
transition from being close to H eigenstates at low n to
approaching the eigenstates of X in the high-n domain.
This picture is clearly supported by the behavior of two
typical width functions displayed in Fig. 1. If we extract
explicitly the large diagonal part Vp(r) of the interac-
tion, the critical value of n where the transition occurs
can be estimated by an appropriate perturbation expan-
sion which is carried out in the interaction representa-
tion:

o)

=exp[—f[noz+fo'vb(z')dz'] ] o). (5)
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FIG. 1. Solid line: Width W(n) of the unperturbed
states |n) in the quasienergy basis. (a) e=10"° 0 =5%x10""
(wn? < 1), (b) e=5%107° w=5%x10"2 (wn?>1). Dashed
line: Width of the unperturbed states | n) in the eigenbasis of
the bound-space—projected X operator. The arrows indicate

the transition point calculated according to Eq. (8).

Substituting (5) into Eq. (2), integrating over a field cycle, and using Eq. (3), we obtain

{exp[i[HoT-é-fOTVD(t')a’I'] —iwa] —1}Io,‘“’(o)>=—:,—forl7,(t’)Iab}")(t’)>dz’, (6)

where V; (1) is the interaction representation of the nondiagonal part of V().
In the low-n regime we start the perturbation expansion by setting lof®(1))=|n). Then w,=—(1/2n2)T and the
Floquet state | w ") which is centered on | n) is distributed on m=n states according to

26X nm
[ (m|w®)y| = SEnm

>

Znm s=1

oo 2
3 (—f)SZ—SA;JS(zm,)

S Qmm

The Floguet state | %) is localized on |n) as long as
the amplitudes (7) are small. Except for resonance con-
ditions, the largest amplitudes occur for m=n=*x 1. Ac-
cording to Hose and Taylor,'® the critical n at which lo-
calization breaks down is estimated as the value n=n,
for which |<n,+l\lf("‘)>| = 1. Using the leading terms

in Eq. (7) and X, ,+1~= — ¥ n? we get
1 5 ewn 1 —(wn?)? 3en, )
1 _ .y
2 1 —(wn?)? 1—Qon’)? o

which, away from resonances, reproduces the transition
points n, to better than = 5 states. This is illustrated in
Fig. 1 by the arrows which mark the value n, calculated
from Eq. (8). We used Eq. (8) to calculate n, for the
parameters used in Fig. 1 of Ref. 8. The resulting
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I n, =73 agrees remarkably well with the »n value where

the probability distribution in this figure exhibits the
sharp transition.

Given a value of n, one can use Eq. (8) to calculate
the critical field ¢, for which the transition to broad
states occurs at the given n. The full line in Fig. 2 shows
the critical field evaluated from Eq. (8). The stars were
obtained by calculation of numerical the width function.
The analytical estimate of the critical field is less accu-
rate in the vicinity of the one- and two-photon reso-
nances at n =87 and n =69, respectively. This is expect-
ed on the basis of the crude criterion chosen to determine
n.

We observed that the transition between localized and
broad states occurs abruptly when wn? <1 [Fig. 1(a)]
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and more gradually when wn®>1 [Fig. 1(b)]l. The
different rates of transition have important consequences
for the ionization process, which could be tested experi-
mentally. It should also be noted that various resonances
or avoided crossings of Floquet eigenvalue'®!" may in-
troduce deviations from the simple picture described
above.

Directing our attention to the Floquet states which
have a large overlap with high-n states |n), we expect
their bound space component to resemble the eigenstates
|En) of the bound-space-projected X operator, which
have the following properties: (1) The eigenvalues &y
are discrete and for large N behave like &y =(n%/8) (N
+ +)2 (2) The eigenstates are normalizable. Their ex-
pansion amplitudes on the eigenstates |n) of H, are
given approximately by

0 ifn< +rx(N+ 1),

(n|én)= )

constxn ¥ ifn> La(N+ 1)

(3) In the n> + n(N+ %) region the n %2 behavior is
modulated by a finite number of oscillations. The last
zero of (n| En) occurs at n =(7/4V/6) (N + + )32,

These results were obtained by semiclassical argu-
ments and were checked numerically by a direct diago-
nalization of the X operator in a basis of 1000 bound
states. At this point we can repeat the perturbative cal-
culation of the Floquet eigenstates choosing a represen-
tation where the operator X is diagonal. Assuming an X
eigenstate to represent the Floquet state to zeroth order,
one finds that the mixing of neighboring X eigenstates
due to the presence of Hg is ~ 1/~/N for large enough NV
values. This substantiates the claim that the Floquet
states which overlap appreciably with high-n states ap-
proach in the limit the | &) states. This is demonstrated
in Fig. 1 where the width functions are compared with
the width of the n states in the X eigenbasis (dashed
line). Because of the power-law structure of the |&x)
states [Eq. (9)] the width function should depend linear-
ly on n for large n. Apart from basis truncation effects,
which become serious for n > 70, this dependence is
indeed observed [see, e.g., Fig. 1(a)].

The addition of continuum effects (method C) does
not change the picture by much. The probability to
remain in the bound space decreases as a result of ion-
ization, but solving Eq. (2) with the initial condition
n(t=0) =6,,, shows that for large enough n, (n]e@))
=~a(t)n "2 where a(r) is independent of n, proving
again the n ~5/2 Jocalization pattern.

To investigate the role of continuum-continuum cou-
pling we introduce method CC where again one may ob-
tain the Floquet eigenstates numerically and project
them on the H eigenstates [ n). The only difference be-
tween the present and the former methods is the power
law— the X eigenstates decay now as n ~ 2 and the de-

cay of the Floquet states follows the same power-law de-
cay. However, this change does not affect the values ob-
tained for n, which are the same for the three methods.

To show that the n 2 power law is not an artifact of
the asymptotic decay properties of the chosen represen-
tation, we diagonalized the X operator which corre-
sponds to our model C in the Sturmian basis. The eigen-
states of this X operator reproduce the n ~%2 power law.
The eigenstates of the complete X operator show the
n =2 behavior.

Because of the power-law decay, there is a significant
difference between the structure of the Floquet eigen-
states discussed here and in the case of the periodically
kicked rotor'?~!* where the Floquet states are either ex-
ponentially localized'® or nonnormalizable extended
states'* with a corresponding continuous spectrum.

In previous studies'®'! we have shown that for ioniza-
tion to occur, probability has to be transported to a
specific range of bound states |n), the “ionization win-
dow™ states, which are characterized by n> ny
=(1/3¢) % If the atom is initially in a state no < n, (e,
) < nw, the atom will be only weakly ionized because
there are no Floquet states which have large overlap with
both the initial state and the window states. Once ng
exceeds n, there exist Floquet states which extend to the
window domain with amplitudes which decrease slowly
(power law) with n. Therefore, given the value of w and
the initial state ng, we can use (8) to determine the criti-
cal field strength €. for which the onset of strong ioniza-
tion is expected to occur. In this way we analyzed recent
experiments®3 where the critical ionization field was
measured. Figure 2 shows the experimental data togeth-
er with our theoretical results. The continuous line is the
solution of Eq. (8). Away from the resonances and for
n <60 it reproduces the numerical and experimental
data. The stars show the values of the critical field ob-
tained from a numerical evaluation of the propagator
(method CC) and finding the field strength for which
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FIG. 2. The critical ionization field €.(ng) as a function of
the initial state ng for frequency @=1.5x107% a.u. Squares:
experimental results (Refs. 2 and 3). Asterisks: numerical
calculation of the field at which n, =no. Solid line: perturba-
tive approach [Eq. (8)].

2533



VOLUME 58, NUMBER 24

PHYSICAL REVIEW LETTERS

15 JUNE 1987

n, =ny. The agreement between the calculations and the
data is very good in the region ny < 75 where the numer-
ical determination of the transition point is unique. At
higher n values the transition point becomes ambiguous
because of the proximity of the resonance and the more
gentle rise of W(n) at n,, which characterizes the region
on?> 1.
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