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Finite-temperature behavior of quantum chromodynamics with two light dynamical flavors is studied
by Langevin simulation on a 8 X4 lattice with the Kogut-Susskind quark action. It is found that the
chiral transition strengthens as the quark mass mq decreases towards zero, changing from a continuous
crossover at mqa =0.2 to a first-order transition at mqa =0.1. The critical coupling at mq =0 is estimat-
ed to be P, =6/g, ' =5.29-5.32, and the physical scale of T, =( 019- 024)m e.

P ACS numbers: 12.38.Gc

The dynamics of strong interactions at zero tempera-
ture is characterized by quark confinement and spon-
taneous breakdown of chiral symmetry. It is expected
that both these properties will be lost at sufficiently high
temperatures, possibly through phase transitions. Quan-
titative studies of such finite-temperature transitions in

QCD have made substantial progress, especially with the
recent development of numerical algorithms for incor-
porating dynamical quarks in the simulation. The
results of simulations ' show that the first-order
deconfining transition at the pure-gauge-theory limit

mq =~ weakens with decreasing quark mass mq, possi-
bly turning into a sharp but continuous crossover for in-
termediate values of mq ~ With further decrease of mq,
however, the transition strengthens again and there is
an increasing amount of evidence that it becomes a
first-order phase transition as mq approaches the chiral
limit mq 0.

It should be emphasized that the majority of simula-
tions ' suggesting a first-order chiral transition were
carried out for Nf =4 degenerate flavors, and the rest
were concerned with the case Nf =3. It is not known
whether this property holds in the physically most
relevant case of Nf =2 light flavors. In fact a theoretical
analysis suggests that the order of the chiral transition
might change from first to second as Nf decreases from 3
to 2. It is thus important to carry out an explicit numer-
ical study of the case Nf =2, and the purpose of this
Letter is to report the result of the first such simulations
using the Langevin method on a 8 x4 lattice with the
Kogut-Susskind quark action and the single-plaquette
gauge action.

Our study shows that the case Nf =2 is very similar to
the cases with Nf ~ 3. We found that the transition be-
comes stronger towards the chiral limit. While the tran-
sition appears continuous at mqa =0.2, we found a clear
evidence for a two-state signal at mqa =0.1. We there-
fore conclude that the chiral transition is first order also
for Nf =2 flavors.

There are several schemes of Langevin simulation.
For the present work, we used the bilinear noise scheme
which allows an arbitrary number of flavors. In this
scheme a multiplicative factor of IVI/4 in front of the bi-
linear noise term of the Langevin equation eflectively
changes the number of flavors to Nf and we set Nf =2.
We have also used the partial second-order discretiza-
tion with respect to the fictitious time i in order to
reduce the magnitude of the systematic error due to a
finite step size h. r.

Throughout the present work, we used an 8 &4 lat-
tice. This is rather small but should be sufficient for
qualitative phase-structure analyses. The bulk of the
simulations were carried out with the step size Ar =0.01.
Close to the transition region simulations with a smaller
step size h, v =0.0025 were also made to ascertain that
the nature of the transition does not change with the step
size.

We concentrated most of our efTort at the quark mass
mqa =0.1 and mqa =0.2. To examine the nature of the
transition, we first prepare a thermalized configuration at
the gauge coupling P =5.7. The deconfining transition of
the pure gauge system occurs at P =5.67~ 0.01 on an
83&4 lattice. ' Hence the full QCD system should be
in the high-temperature phase at P=5.7 which indeed
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was the case for both mqa =0. 1 and 0.2. We then cooled
the system by decreasing P in steps of AP =0. 1 and mak
ing sweeps over z. =20. Measurement of the Polyakov
line (0) = —,

' (trQU„4) and the chiral order parameter
(gg) = —,

' (trD ') with D the lattice Dirac operator for
the Kogut-Susskind quarks revealed that the system
dropped to the low-temperature phase at P =5.5-5.4 for
m~a =0.2 and P =5.4-5.3 for m~a =0.1. Once the tran-
sition region is thus narrowed down, more detailed stud-
ies are made to determine the nature of the transition,
with simulations using a longer Langevin time interval
and a finer step in P, typically r =50-200 and AP =0.02.
A less systematic study was made at mqa =0.05, in the
region P =5.40-5.32 with r =50-100.

In Fig. 1 we show the average value of the Polyakov
line and the chiral order parameter at mqa =0.2, 0.1,
and 0.05 from the runs with h, v=0.01. Evidently the
transition becomes more abrupt with decreasing mq, and

appears discontinuous for mqa ~ 0.1. In order to exam-
ine whether the discontinuous behavior at mqa ~ 0. 1 sig-
nals a first-order transition, we made a thermal-cycle
analysis at m~a =0.1 in steps of AP =0.02 with r =50.
The results, exhibited in Fig. 1 by solid circles, show a
clear sign of hysteresis at P =5.38, suggestive of the
first-order nature of the transition at mqa =0.1. To
confirm this interpretation we have carried out several
additional runs: Starting from the last configuration
(r =50) of the thermal cycle run in the high- (low-)
temperature phase at P=5.38, we cooled (heated) the
system to P=5.37 (P=5.39). We found that the system
quickly moved to the low- (high-) temperature phase.
Thus the transition occurs over a narrow range
P=5.37-5.39. We also extended the runs at P=5.38
from v=50 to v=250. The extension from the high-
temperature phase showed a single flip-flop to the low-

temperature phase (see below for a similar figure with a
smaller time step br=0.0025). The other run starting
from the low-temperature phase, after staying in that
phase for a considerable range of r (=200), moved to
the high-temperature phase.

We did not find any signal of metastability at
mqa =0.2. The simulations in the region of transition

P =5.5-5.4 at this value of mz were rather characterized
by large and irregular fluctuations as a function of I and
a single broad peak of the histogram. This is illustrated
in Fig. 2 which shows the magnitude of fluctuation of the
Polyakov line o =((Reft) ) —(ReA) at m~a =0.2 and
0.1. The existence of a peak for mqa =0.2 strongly con-
trasts with a relatively fiat behavior for mqa =0.1. The
same feature also appears in the length of correlation of
the Polyakov line and the chiral order parameter in

Langevin time ~. If one defines the correlation time r, to
be the value at which the autocorrelation function de-
creases to 10% of its value at i=0, we found that i, is
small ( ~ 1-2) away from the transition region. We
found only a slight increase (r, ——3-5) for mqa =0. 1
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FIG. 1, Average value of' (a) the Polyakov line Re(Q) and

(b) the chiral order parameter (EX) as a function of P for the

runs with hi=0.01. The triangles, circles, and crosses are for

the quark mass mqa =0.05, 0. 1, and 0.2, respectively. The
solid circles show a thermal cycle with v=50 at mqa =0.1.
The errors are estimated taking account of the autocorrelation
in r.
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over P =5.3-5.4 except at P =5.38 (r„=20-25) at
which we found signs of metastability. In contrast, at
m~a =0.2, r, exhibited a broad maximum over P=5.4- 5.5 with r, = 10. These features are consistent
with the transition being first order at mqa =0. 1 and
continuous or second order at mqa =0.2.

The diAerence in the behavior of the system between
mqa ~ 0. 1 and mqa =0.2 was also apparent in other ob-
servables. In Fig. 3 we show the internal energy den-
sity for gluons Eg and quarks Eq calculated by
Ega =3P(P, —P, ) with P, (P, ) the timelike (spacelike)
plaquette average and

Eqa =(Nf/4)((trD, D ') —
4 + 4 m&a(trD '))

with D, the temporal hopping term of D. The continuous
change at mqa =0.2 is in marked contrast with the
abrupt jump at mqa =0. 1 and 0.05.

In the Langevin simulation, a finite step size AT: intro-
duces a deviation of the action governing the distribution
of field configurations. For the Kogut-Susskind quark
action, the magnitude of the deviation is of order hz/m~
and increases with decreasing mq. It is important to
check whether such a deviation might afI'ect the nature
of the transition. To examine this point, we carried out
simulations at mqa =0. 1 decreasing the step size to
AT:=0.0025. These runs were generally started from the
last configuration of the hz. =0.01 run and were extended
over i =50-200.

Figure 4(a) shows the behavior of the Polyakov line
with respect to r at P =5.3725. We see nice flip-flops be-
tween the low- and high-temperature phases and the his-
togram in Fig. 4(b) exhibits the corresponding peaks

clearly separated. We regard this as strong evidence for
the first-order transition at mqa =0.1.

The value of P at which we found evidence of metasta-
bility is shifted slightly from P =5.38 to P =5.3725 as Ar
is decreased from 0.01 to 0.0025. Also the runs at
P =5.375 and P =5.38 with Ar =0.0025 were clearly in

the high-temperature phase, while the run at P=5.37
remained in the low-temperature phase (see Fig. 1 for
comparison with the dr=0. 01 runs). The direction of
the shift agrees with the known result '' that a finite hi
effectively reduces the value of P. We estimate that
the magnitude of the shift with h, ~=0.01 is at most
6P =0.01, and more importantly, the finite-Ar eflect does
not change the nature of the transition.

Let us estimate the critical value P, at m~a =0.
Linear extrapolation of the values P, =5.37-5.38 at
m~a =0. 1 and P, =5.33-5.35 at m~a =0.05 gives

13, =5.29-5.32 at m~a =0. To estimate the physical
scale of T, we utilize the spectroscopy analysis ' ' at
P=5.5 (on an 8'& l8 lattice) to fix the lattice spacing.
Taking into account a correction ( —20%) due to the
difference BP=0.2 by the scaling formula, we obtain

T, /m~ =0.19-0.24 or T, =0.15-0.18 GeV.

(With this scale m~a =0. 1 corresponds to m~ =60-80
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FIG. 3. Internal energy density of (a) gluons and (b) quarks

from the runs with h, v=0.01, normalized by the temperature
factor T with Ta = 1/N, = —,

'
. The triangles, circles, and

crosses represent the data for mqa =0.05, 0.1, and 0.2, respec-
tively. Estimates of autocorrelation time are incorporated in

the errors shown. The horizontal bars show the Stefan-
Boltzmann value.
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FIG. 4. (a) Langevin time dependence of the Polyakov line
Re lrta1t m~a =0.1, 13=5.3725 with Dr=0.0025. (b) Histo-
gram for Re(0, ) for the run exhibited in (a).
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MeV. ) If we further use the formula

ALa =(8n P/29) i 'exp( —4rr P/29)

for Nf = 2, P, may be also translated into T,/Ar
=112-117 or T,/AMs=2. 55-2.66, in terms of AMs
=43.88AL. ' For comparison, we quote T, /AMs
=2.55 ~0.03 (Nf =0) ' and 2.94~0.22 (Nf =4) on
a lattice with temporal size N, =4, T,/AMs =2. 11
~ 0.02 (Nf =0) and 2. 14+'0. 10 (Nf =4) ' on a lattice
with N, =6.

It is well known that the renormalization-group
analysis of an eA'ective meson Lagrangean predicts a
first-order chiral transition for Af ) 3 flavors. The same
conclusion actually holds for the case Nf =2 if the
determinant-type interaction is negligibly small in the re-

gion of transition, and in this sense is consistent with our
result at mqa =0.1. The determinant-type interactions
are generated by topologically nontrivial gauge config-
urations (instantons). They are suppressed for light

quarks and at high temperatures. Some such suppres-
sion might underlie the first-order nature of the chiral
transition for Af =2 flavors.

The numerical calculation for the present work was
carried out on HITAC S810/10 at the National Labora-
tory for High Energy Physics (KEK) and on HITAC
S810/20 at the Computer Center, University of Tokyo.
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Rote added. —After the paper was submitted we re-

ceived a preprint by Gottlieb et al. ' who did not find

clear signs of metastability with a hybrid algorithm.
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