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Exact Critical Behavior of a Random-Bond Two-Dimensional Ising Model
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A 2D Ising model in which the bonds K fluctuate randomly about K„the critical value of the pure
system, is considered. The ensemble average of the square of the two-point function, ((sos') )A„, is

shown to decay as (lnR) 'r R 'r2 at the critical point. This implies that ilsosz)1&, is bounded above by
(lnR) 'rsR 'r in disagreement with the exp[ —(ln lnR) 21 decay law found by Dotsenko and Dotsenko by
a diferent method. On the other hand, the present calculation reproduces their specific-heat singularity
C —ln

~
lnr

~
(r =K —K, ).

PACS numbers: 64.60.Cn, 05.50.+q

Since Onsager's solution of the Ising model, we have
come a long way in terms of exact solutions for two-
dimensional (2D) homogeneous statistical mechanics
models, at the level of not only free energies but also
correlation functions. ' In contrast there are few exact
results in 2D for the averaged free energies and fewer re-
sults for the averaged correlation functions of random
systems, where the interactions or bonds are drawn from
a probability distribution. McCoy and Wu, who evalu-
ated the free-energy singularity for an Ising model with
correlated randomness in the bonds, also evaluated
correlations of boundary spins. Recently Shankar and
Murthy calculated bulk correlation functions for a re-
lated model that allowed for frustration. There is an in-

equality for the correlation-length index v due to Chayes
et al.

We are concerned here with a nearest-neighbor prob-
lem where the bonds K fluctuate independently at each
site about the critical value K, of the pure system. This
problem was investigated by Dotsenko and Dotsenko
(DD).6 Using continuum methods they found that the
specific heat C(r) has a In

~
lnr

~
singularity (z being

K —K, ) in contrast to the lnr singularity of the pure
case. For the ensemble-averaged spin correlation
&(sosg))A„ they found a decay law exp[ —(lnlnR) l in

contrast to the R ' decay in the pure case. Since they
show that randomness is marginally attractive one ex-
pects the pure-system behavior to be modified at most by
logarithms, as in the case of the free energy and in

contrast to the correlation function whose index g has
changed from 4 to 0. I was therefore motivated to re-
examine the results. Using a diAerent and simpler pro-
cedure, I found that the ensemble-averaged square of the
correlation function decays as (lnR) 'i R 'i2. Now the
average over samples of the square of the correlation
must be larger than the square of a similar average. It
follows that g ~

4 . Since this result contradicts DD, I
will provide the details of my calculation and follow this
with a derivation of the ln

~
lnr

~
singularity in C using

my approach.
Since both our calculations rely heavily on the fer-

where K* = —[lntanhK]/2 and o(n) are Pauli matrices
at site n of the row. Let us now introduce Hermitian
(i.e., Majorana) fermion operators

n —
1

lid, (n) =2 'i' Q cr~(m)cr~(n),

n —
1

y2(n) =2 ' Q a~(m)a3(n),

which obey the anticommutation rules

Iy;(n), y, (m)]+ =cr;, 6 „.

(2)

(3)

(4)

Dirac fermions used by Schultz, Mattis, and Lieb are
given by

e(n) =[@)(n)+i@2(n)]/J2 (s)

and obey the more familiar anticom mutation rules.
Since

a ~ (n ) = —2i y ~
(n ) Vrq (n ),

a3(n)cr3(n+ 1 ) =2iVr~ (n)Vr2(n+ 1 ),

we are dealing with a free-fermion theory. When
r=K —K* tends to zero, we obtain in the continuum
limit a Majorana field theory with mass rn = z.. We may
represent the partition function (up to some prefactors)
as a Grassmann integral in Euclidean space:

Z=„dyexp — I r8rl+rrrylrd XrI.
1 (7)

Expressing the fermion integral as the square root of
det[8+r] and using the identity detA =exptrlnA one

mionic representation of the Ising model, a few basic no-
tions will now be recalled. Let us begin with the transfer
matrix for the pure system with bonds K (ignoring ana-
lytic prefactors):

T=exp[K* g„a&(n)]exp[K+„a3(n)a3(n+1)],
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obtains the usual T: lnr singularity in the free energy. The correlation function poses a far greater challenge, as can be
seen from Eq. (6). Since

R —
1

crr(0)e'r(R) =err(0)crr(()crr(l)crr(2) e'r(R) yr(0)'ercp (rr g (rr(m))rr(m)
l

(r(rrr),
m=1

we find that (spstt) is given by the vacuum expectation of
the above string of fermions (whose length grows with
the separation) so that its evaluation is very tedious in

the operator formalism. DD express it in the functional
integral formalism as the average of a similar line in-

tegral with respect to the Grassmann measure in Eq. (7)
and succeed, using their considerable skills, in evaluating
it at i=0 to obtain g =

4 . They then generalize all this
to the random case using the replica trick. Z is now

given by an O(n) Gross-Neveu model' at n =0 with a
mass term proportional to r and four-fermion coupling
—,
'

g (yy), where g measures the variance of the bond
distribution. [We can understand this as follows. If we

replace r by r(x) in Eq. (7) to represent the fluctuating
bonds, use the replica trick, and average z(x) over a
Gaussian distribution of mean r and variance g the re-
sult follows. ] At r =0 the fermion string is evaluated by
DD by renormalization-group (RG) methods.

We will follow a diA'erent route inspired by the work
of Itzykson and Zuber (IZ). '' For reasons that will be
apparent soon, these authors consider the square of the
two-spin correlation function for the pure system.
Squaring introduces a second Majorana fermion X which
combines with y to form a Dirac fermion + = (y
+iX)IJ2, while the fermion string essentially becomes
the line integral of the fermion charge jp.

t x=RarI

(spstt) =Z ' I d+d@exp' J [+8++r++]d x 'exp itr Jo jpdx
'

e(

(9)

Z =„d+dOexp J [PBP+ r+% ]d x,
rc

where a is the inverse of the momentum cutoff A. (Thus, a separation of R lattice sites corresponds to a laboratory dis-
tance x =Ra. )

To understand Eq. (9) note that Eq. (8) now is replaced by

R —
1

o3(0)p3(0) o3(R)p3(R) y) (0)X) (0) Q y2Xzy)X) y2(R)X2(R),
I

(io)

where the p's are a set of Pauli matrices identical to the
cr's If we no. w exponentiate the product in the middle as
before and recall that jp=+ +, Eq. (9) follows, except
for the end factors at 0 and R which will be put back
eventually, and powers of a that relate lattice quantities
to their continuum counterparts.

The point of doing all this is that given a Dirac fer-
mion, we can bosonize, ' which (in the Euclidean ver-
sion) amounts to the replacement

plies
t Ra t Ra

jp(x) dx =tr '"„dy
= [y(Ra) —y(0) ]IJz, (i4)

so that the correlation function squared becomes a two-
point function of the operator exp(itr't (t)) in the sine-
Gordon theory. If one keeps the end factors one finds
that the operator in question is"

(i2)

(i3)

0 =(ap) 't N„(sintr't (t)),

~here A„denotes normal ordering at mass p. Since'

(15)

Those who are unfamiliar with bosonization need only
be aware that the Green's functions of any string of fer-
mionic operators in the left-hand side of Eq. (12) or (13)
with respect to the fermionic action density in Eq. (11)
will coincide with that of the corresponding bosonic
string with the bosonic action in Eq. (11). To the extent
that interacting theories can be defined by their pertur-
bation series about the free-field limit, bosonization al-
lows us to pass from the fermionic to the bosonic version
and vice versa using these rules. The last equation im-

N„[e'»]= [A/p] t"" e't'&, (i6)

we find that O is just the unordered operator sintr'
At the critical point the cosine interaction vanishes and
all one needs are Gaussian integrals. (See, for example,
Ref. 12 for their evaluation. ) Evaluating them, IZ ob-
tain the result

(Spstt) =[1/ARa] ' =[1/R] ' (i7)
since aA = 1. When we take the square root, g =

4 fol-
lows.
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We will now generalize this bosonic picture to the random case. For a given realization of bonds,

(sps~) —„0(0)0(Ra)e ~ dp/Zg [Z~ =„Ie ~ dp], (is)

S(y) =„[——,
' (Vy) '+ r(x)Acos(4~) '"(t ]d'x. (19)

We multiply the numerator and the denominator of (1S) by Zg ', and set n =0. Next we average over r(x) using a
Gaussian of mean 0 (to be at the critical point) and variance 2g . The result is

((spsp)')A„=„o)(0)0)(x=Ra)e '" "d(t, (2o)

where the subscript 1 tells us that it is the replica we began with and

n 2 n n

S(n, p) =„I& g [ —
—,
' (&p;) ]+ A g g cos(4n) ' p;cos(4x) '

p d x
i =1 i=l j=l (2i)

Next we eliminate the i =j terms in the double sum

using the identity

[Acos(4') '"yl ' = —(27r) '(&(t )' (22)

which can be derived' either naively, recalling that in

d=2, [&y"C] = —2[&&&], and then bosonizing, or by
use of the operator-product expansion. The eAect of this
is to rescale the coefficient of the kinetic term by a factor
1+g /2z. If we rescale p by the square root of this fac-
tor to obtain the standard kinetic term, the operator 0]
changes:

0) (x) =sin [[zr/(I +g'/2z)] '~'(t
) (x)], (23)

and the cosines in Eq. (21) are likewise modified. (The
power of bosonization can be appreciated if one notes
that in the Ashkin-Teller model, where g is the four-
spin coupling, these manipulations would give us the ex-
ponents varying continuously with g . )

We now prepare to apply renormalization-group ideas
to the 0~-0~ correlation function, I (x,g, A), which
obeys'

pg(.zA) ( )F(x,g, A) =exp 2J dg I (l,g(xA)). (24)
p(g)

P(g) = [r)g/r)1nA]g(„) = —[n —1]g'/2gz, (2S)

where g(p) is the renormalized coupling at scale p. As
for ) (g), it is

y(g) = [r) lnZp/ti inA]g(„1, (26)

where Zp(g, A/p) multiplicatively removes the A depen-
dence of O~ correlation functions. Let us now derive y to
order g . At the lowest order the O]-O] function goes as

2

[xA] '~ . Since rescaling 0 by A'~ renormalizes it,
y
= —, . To order g, there are two possible sources.

1 2

First, the definition of 0~ itself involves g; see Eq. (23).
In addition there can be a g term from our expanding
the interaction. This term, which no longer has an i =j
piece, is forbidden from contributing to the O~-0] corre-
lation by the symmetry of the free-field action under in-
dependent translation of each p;. Thus we are left with
the free-field evaluation of (0~(o,g)0~(x, g)):

!
In the above, the p function of the Gross-Neveu model is
known:

(o, (o)o, (x)&
1

[2(1+g /2')] 2

1+ lnx A
4z

(27)

Clearly,

2

Zp=A' 1
— lnA, y(g) =——

4 8~' (2s) ((sp, s~) ) = (I + [g /zr] lnR) ' /R ' (3i)

and Eq. (24) implies

I (x =Ra g) ccR ~ e ~~~21 "i&~"&~glI (I g(x)) (29)

Integrating Eq. (25) (for the case n =0) gives

2

g'(xA) =
1+ [g /z. ]lnxA

(3o)

Substituting this into Eq. (29) we find the advertised re-

Since ((sps~& )A, ~ [((sps~))A„] it follows that q ~ —,
'

.

Now a quick derivation of the specific-heat singularity
using the present approach. First we square both sides
of Eq. (7), which merely doubles the free energy and re-
places y by +. Since %"+ couples to r, the average of
r(x), the specific heat of a given sample is given by the
++-++ correlation at zero external momentum. If we
now average over r(x), and use the replica trick, we are
left with the zi +~-++~ correlation function (where 1 is
the replica index) in a Gross-Neveu model with n Dirac
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fermions. Upon bosonization, and use of Eq. (22), ++~
will be given by

0( =A cos [[4~/(I +g '/2rr)] 'i'y)]. (32)

Since the cosine is renormalized by normal ordering, Eq.
(16) tells us (upon taking into account the prefactor A

that comes with 0) that

Z — =p (I +g 2/2n) (33)

which implies y(g) = —g /2z. However C, unlike I in

Eq. (24), obeys an inhomogeneous RG equation just like
its counterpart in d=4. (This is because Z~~ will re-
move A dependence in all except the autocorrelation
function which needs a subtraction even in free-field
theory. ) Following Brezin in Ref. 13 (p. 372) the lead-
ing singularity is

~]/i d B(0)exp
z

C(r,g)-
& 1

If we now recall Eq. (30) we get

"'
dy g'(y)
J (3S)

C(r, g)—,ln 2l+~ ln-
7r T'

(36)

in agreement with DD. Notice again the crossover from
pure to random system behavior, which occurs at
r =exp[ —z/g'].

To conclude, I have calculated exactly the asymptotic
decay law, (lnR) 'i R ', for the averaged square of the
correlation function at the critical point, as well as the
ln

~
lnr

~
singularity in C(r), the average specific heat,

for an Ising model where the bonds fluctuate about the
critical value of the pure system. Bosonization was free-

ly used and greatly simplified the correlation calculation
by converting the fermionic string to a two-point func-
tion in the bosonic version, making the application of RG
methods straightforward. The resulting bound g ~ 4

for the average correlation function contradicts the DD
result while the specific-heat calculation is in agreement
with theirs. Assuming that the results quoted here are

C(r, g) — B(g(z))exp 2 y(g(y)),dz dp
z & I y

(34)
where B, to lowest order, is just a constant (proportional
to the coeScient of lnA in the free-field limit of the
++~-@@~ correlation function), )" is the anomalous di-
mension function for [@+]~, and X is chosen such that
the running mass r(X) equals a constant, say unity. As
for r4, ) we need only its lowest-order behavior:
r(l) = rk. Eq. (34) then tells us that

correct we can follow two routes. The first is to pursue
the Dotsenko approach till it yields a decay law that
agrees with the bound. The other is to argue as follows
that the correlation function, as R ~, is sample in-
dependent up to corrections of order I/lnR. If one evalu-
ates the average of the fourth power of the correlation
along the same lines as above, one finds that y(g) is the
same as before ro order g —the interaction term still
does not contribute for the same reason as before —and
the average of the fourth power comes out to be the
square of the average of the second power. [There are
diAerences, but they are proportional to g (R) —I/lnR. ]
In fact, this behavior holds for all even powers, suggest-
ing that the squared correlation is sample independent
asymptotically, If this is so, so must be the correlation
and we get its average by simply taking the square root
of my answer and obtaining the decay (lnR) 'i R

This research was supported in part by Department of
Energy Grant No. DE-AC02-76ERO 3075 which is

gratefully acknowledged. I also thank G. Murthy and
M. Kardar for useful conversations.

' R. J. Baxter, Exactly Soli ed Models in Statistical
Mechanics (Academic, New York, 1982).

2A good source of information and other references is J. U.
Jose, L. P. Kadanoff; S. Kirkpatrick, and D. R. Nelson, Phys.
Rev. B 16, 1217 (1977).

38. M. McCoy and T. T. Wu, Phys. Rev. 76, 631 (1968);
B. McCoy, Phys. Rev. B 2, 2795 (1970).

4R. Shankar and G. M. Murthy, Phys. Rev. B 35, 3671
(1987).

5J. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys.
Rev. Lett. 56, 2999 (1986).

V. S. Dotsenko and V. S. Dotsenko, Adv. Phys. 32, 129
(1983).

7T. D. Schultz, D. Mattis, and E. H. Lieb, Rev. Mod. Phys.
36, 856 (1964).

SS. Samuels, J. Math. Phys. 21, 2806 (1980); C. Itzykson,
Nucl. Phys. B210 IFS61, 448 (1980). See also Ref. 6; E. Frad-
kin, M. Srednicki, and L. Susskind, Phys. Rev. D 21, 2881
(1980). Our Euclidean matrices are yo=cr~ and y~ =a .

9S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965
(1975); G. Grinstein and A. Luther, Phys. Rev. B 13, 1329
(1976).

~oD. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
' 'C. Itzykson and J. B. Zuber, Phys. Rev. D 15, 2875 (1977);

see also A. Luther and I. Peschel, Phys. Rev. B 12, 3908
(1975).

'2S. Coleman, Phys. Rev. D 11, 2088 (1978).
E. Brezin, in Methods in Field Theory, edited by R. Balian

and J. Zinn-Justin (World Scientific, Singapore, 1981); D. J.
Amit, Field Theory, the Renormalizalion Group and Critical
Phenomena (World Scientific, Singapore, 1984).

2469


