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A general, analytically tractable, nonperturbative theory of the equilibrium structure of dense polymer
melts is proposed on the basis of modern integral-equation theories of molecular liquids. Calculations
are presented for polymer rings obeying Gaussian statistics and interacting via hard-core repulsions. The
correlation hole, compressibility, and static structure factor are found to be sensitive functions of liquid

density and degree of polymerization.
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Theoretical understanding of the structure of polymer
solutions has increased dramatically in the past two de-
cades because of the development of scaling, renormal-
ization-group, and self-consistent-field techniques.!'™*
On the other hand, the dense polymeric liquid is charac-
terized by very strong intermolecular interactions and
has remained virtually intractable analytically. More-
over, Monte Carlo and molecular-dynamics simulations
of both lattice and continuum models of polymer melts
are extremely computationally intensive and have gen-
erally been limited to small systems composed of rela-
tively short chains.® The purpose of this Letter is to
present the first systematic, continuum analytic ap-
proach to the equilibrium structure of polymer melts
based on nonperturbative statistical mechanical theories
of molecular fluids. The central result of our work is the
calculation of the intermolecular radial distribution func-
tion for the polymer liquid. This quantity is of signifi-
cance not only for structural reasons, but also because it
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where p is the molecular number density, 4, C, and o are
square matrices of rank N (for molecules containing N
interaction sites) with elements hg,(r), Cq(r), and
waq,(r), respectively. More specifically, ha,(r)=gq,(r)
—1, where g,,(r) is the intermolecular site-site radial
distribution function, C,,(r) is the corresponding direct
correlation function, and @,,(r) is the intramolecular
probability distribution function for sites a and y on the
same molecule and describes chemical connectivity and
flexibility. The direct correlation function defined in Eq.
(1) can be interpreted® physically as an effective pair po-
tential in the liquid and is thermodynamic state and in-
tramolecular structure dependent. The integral equation
approach is particularly appealing since the microscopic
intermolecular interactions enter explicitly via the direct
correlation function.” For flexible molecules the in-
tramolecular and intermolecular correlations must be
determined self-consistently. Since rapidly varying
repulsive forces dominate the dense liquid structure, the
problem is generally simplified by adopting a hard-core
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provides a direct route to the calculation of all the ther-
modynamic properties, including an equation of state
beyond the artificial lattice or cell models.

The modern theory of one-component atomic and
small-molecule liquids has advanced to a mature
stage.%” In the absence of strong attractive forces,
short-range order is controlled by the harsh repulsive
forces which define molecular shape. Quantitative off-
lattice theories for molecular liquids based on this con-
cept have been pioneered by Chandler and co-workers®
utilizing a representation of a molecule as a collection of
overlapping spherical interaction sites or chemical sub-
units connected by covalent bonds. Within such a model
the intermolecular pair potential is a sum over spherical-
ly symmetric site-site potentials, v,,(r), where r is the
distance between sites a and y on different molecules.
The structural information in this approach is contained
in the generalized Ornstein-Zernike matric integral
equations®

(1)

I

interaction for v,,(r) resulting in the so-called “‘refer-
ence interaction site model” (RISM).® To uniquely
determine h(r) and C(r) the following closure relations
for Eq. (1) are introduced:

hay(r)=—1, r <og, (2a)

(2b)

where o,, is the distance of closest approach between
sites @ and y. Equation (2a) is an exact relation, while
Eq. (2b) is a central approximation of the RISM theory
and is analogous to the closure employed in the success-
ful Percus-Yevick theory for atomic hard-core fluids.’
The above theory is a nonperturbative, many-body ap-
proach which explicitly incorporates the constraints of
intramolecular structure in determining the intermolecu-
lar packing arrangements. The accuracy and reliability
of the RISM theory at liquid densities has been exten-
sively documented by comparison with both experiments

Cor(r) =0, r> oy,
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and computer simulation.$

Because of the apparent coupling between the in-
tramolecular distributions wg,(r) and the intermolecular
pair correlation functions h,,(r) for flexible molecules,
the application of the RISM approach to high polymers
would seem to be virtually intractable. In this work we
circumvent this difficulty by invoking theoretical>® and
recent neutron scattering studies® which have unequivo-
cally established that the single-chain configurational
statistics are unperturbed, down to nearly monomer
length scales, in the melt. That is, the intramolecular
distribution function of each chain is essentially indistin-
guishable from that of an isolated polymer in a theta-
solvent. This fact permits the insertion of the unper-
turbed, system-specific distributions for the functions
w4y in Eq. (1), thereby bypassing the need for a simul-
taneous, self-consistent determination of both the in-
tramolecular and intermolecular correlations.

As an initial application we consider the freely jointed
chain model in which the polymer consists of N hard
spheres or beads of diameter o connected by universal
joints. Each bead represents a statistical segment which
may, in general, consist of several chemical subunits.
This model corresponds to a completely flexible chain de-
scribed! by a Gaussian intramolecular distribution func-
tion of the form &,,(k) =exp(—k25%|a—y|/6), where
we have taken the bond length between nearest-neighbor
beads to be equal to the hard-sphere diameter and the
caret symbol to denote Fourier transformation. Substi-
tution of this relation into the RISM equations (1) yields
a set of N(V+1)/4 independent, coupled nonlinear in-
tegral equations for the intermolecular pair correlation
functions. In practice, numerical solution for large /N is
very difficult, although possible in principle. Since our
primary interest is in long chains, we consider for simpli-
city the analogous Gaussian “‘ring” polymer. The in-
tramolecular site-site distribution function for the ring
molecule is!?

Doy (k)
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For relatively short length scales and large V we expect,
on physical grounds, that end effects will be insignificant
implying the ring and chain polymer intermolecular
correlations will be nearly equivalent.!! In addition,
there is considerable interest in synthetic and biological
ring polymers of variable degrees of polymerization.!?
As an obvious consequence of the ring symmetry the in-
termolecular correlation functions are independent of
site labels: h,,(r) =h(r) and C,,(r)=C(r). This re-
sults in enormous technical simplification since the ma-
trix RISM equations reduce!3 to a single integral equa-
tion which in Fourier-transform space is given by

Ak)=dk)CKk) k) +pmdk)C k)R (K), (4)

with the closure relations A(r)=—1, r<o and
C(r) =0, r> o. Here, p,=pN is the statistical segment
or bead density, and &(k)=3 . d,,(k) is the in-
tramolecular ring polymer structure factor. To numeri-
cally solve Eq. (4) we have followed established pro-
cedures®!* based on a functional variational principle
which can be reduced to a small number (four in our
case) of coupled, nonlinear algebraic equations.'> This
analysis yields an accurate numerical solution for C(k)
and the intermolecular pair correlation function,
g(r)=h(r)+1, is obtained from Fourier inversion of Eq.
(4). The corresponding structure factor relevant to
scattering experiments is given by

Sk)=dék)+pmh (k)
=&kl — pmd(k)C (k)] 1. (5)

An extensive numerical study of the ring polymer was
carried out!’ as a function of reduced density p,,o> and
degree of polymeriztion N. Representative results for
the radial distribution function at a low and high liquid
density and two values of NV are presented in Fig. 1. As
required for hard-core systems, g(r) jumps discontinu-
ously from zero to a finite contact value which is an in-
creasing function of density and decreasing function of
N. Knowledge of the contact value, g(o %), determines
the equation of state via the virial theorem.> Of particu-
lar interest is the “correlation hole” structure of g(r) re-
flecting the partial expulsion of monomers on different
rings from inside a tagged polymer coil due to the inter-
molecular excluded volume interactions and intramolec-
ular constraints. From Fig. 1, it is clear that interpreta-
tion is enhanced with increasing density and/or degree of
polymerization. The latter trend is a consequence of en-
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FIG. 1. Intermolecular radial distribution function as a

function of the scaled separation where R?=No?/12 is the ring
polymer radius of gyration. Results are shown for p,o3=0.9
and N =2000 (solid line), N =200 (long-dashed line); p3, =0.6
and N =2000 (short-dashed line), N =200 (dash-dotted line).
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tropic mixing effects and the fact that the density of a
random coil of entropic mixing effects and the fact that
the density of a random coil (walk) decreases as the in-
verse of its radius. The intermolecular correlations can
be experimentally probed in detail by x-ray scattering!®
in conjunction with complementary neutron scattering
measurements on deuterated samples’ in order to
separate out the intramolecular contributions. Alterna-
tively, intermolecular excitation transfer can be em-
ployed as an indirect measure of the correlation hole. !
The structure factors for the high-molecular-weight
systems are plotted in Fig. 2 and are not describable in
terms of any simple analytic function. The nonuniversal
form of S(k) in the ring polymer melt is due to a com-
bination of two physical effects. The first relates to the
differences between the ring and linear polymer in-
tramolecular structure factors at small (kRgS 1, where
Ry, is the radius of gyration) and intermediate
(R '<k~'<o™!) wave vectors. It is well known!?
that &(k) for the ring decays slower at small k than the
corresponding linear chain. In addition, although the
ring w(k) eventually scales in the k ~2 Debye-function
fashion, it approaches this limiting behavior slower than
the chain and in a nonmonotonic manner.'® The second
consideration is that at high densities the details of inter-
particle interactions are important and are reflected in a
wave-vector dependence of the direct correlation func-
tion. At large wave vectors S(k) reflects the complex
behavior of both the direct correlation function and the
intramolecular structure factor. In this regime, the
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FIG. 2. Log log plot of the inverse of the structure factor
[with the trivial self-correlation subtracted Sa(k) =S(k) —1]
minus its k =0 value as a function of dimensionless wave vec-
tor. The circles (squares) are for pmo®=0.6 (0.9). The
straight line corresponds to Lorenztian behavior. The inset is a
linear plot of S4(k)/S$4(0) for pmo®=0.6 (solid line) and 0.9
(dashed line).
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random-flight model is an obviously oversimplified
description, but, the presence of significant scattering in-
tensity at large wave vectors is a general feature of the
dense liquid.

A related thermodynamic property of considerable in-
terest is the isothermal compressibility which is propor-
tional to the static density fluctuations and hence S(0).
Detailed calculations for the dense melt reveal that S(0)
increases by roughly 50% on going from an N =100 to
an N— o polymer at fixed monomer density, which is
consistent with the increased degree of interpenetration
for larger rings. At fixed N, S(0) is 2 strong function of
density varying approximately as p,, *, where A=4.15 for
N 22000 and decreases to A=3.98 for N =100. The
density dependence of the compressibility permits a
determination of the equation of state via integration of
a standard thermodynamic relation.’

Another structural quantity of interest is the mean dis-
tance, or ‘“‘screening length,” over which density fluctua-
tions decay in the liquid. As a reasonable measure of
such a length scale we have adopted the distance over
which the structure factor decays to one half its initial
zero-wave-vector maximum, ie., S(ko= 2ra/é) =0.5.
With this definition £ is of the order of 5+ 20 and de-
creases with density as an approximate power law of the
form £~p, ", where n decreases monotonically from
1.55 for N =2000 to 1.21 for N =100.

Finally, the present theory can also be applied to cal-
culate the scattering patterns from partially labeled
(e.g., deuterated) polymers.'> Such a problem has been
considered by de Gennes, who constructed a simple and
successful theory based on the random-phase approxima-
tion and the assumption of liquid incompressibility. !
For the limiting case of one labeled monomer per ring
our results are in very close agreement with the predic-
tions of de Gennes in the high-density and large-N re-
gime. However, it should be emphasized that the in-
compressibility assumption employed to derive the
random-phase-approximation expressions yields a theory
which is independent of the explicit intermolecular in-
teractions and liquid density, and corresponds to an

S(k) that is identically zero in the unlabeled melt. It is
therefore largely devoid of content for the problems
which we have considered.

In conclusion, we have performed the first microscopic
calculations of the intermolecular structure of dense
polymer melts based on an analytically tractable, non-
perturbative continuum theory. Our approach is dis-
tinguished by its ability to compute the thermodynamic
and pair correlation functions for arbitrary density, de-
gree of polymerization, and intramolecular structure.
The specific hard-core model considered can be viewed
as a reference system about which perturbation theory
can be performed to incorporate the effects of continuous
repulsions and weak attractive interactions on both the
structure and equation of state. The theory can be for-
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mulated in a computationally tractable fashion for long
linear polymers.!> In addition, chain stiffness and rota-
tional isomerism can be included thereby permitting a
realistic treatment of local chemical structure.!®> The
feasibility of such extensions within the context of a
functionally practical formalism is encouraging for a
variety of future system-specific applications such as in-
termolecular energy transport and polymer phase transi-
tions.

This work was performed at Sandia National Labora-
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under Contract No. DE-AC04-76DP00789.
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