
VOLUME 58, NUMBER 23 PHYSICAL REVIEW LETTERS 8 JUNE 1987

Velocity Distribution Function of a Streaming Gas via Nonequilibrium Molecular Dynamics
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The shear-flow-induced distortion of the velocity distribution function of a Lennard-Jones gas is com-

puted in a nonequilibrium molecular-dynamics simulation and compared with the kinetic theory based

on the Boltzmann equation.
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nF(V)d V=f(c)d c (2)

Notice that fFd V= 1. The possible dependence of n,
v, V, T, f, and F on the time t and the position r has not
been indicated explicitly.

The function F(V) can be expanded with respect to
basis functions, e.g. , spherical harmonics Yt (V) or
Cartesian tensors constructed from the components of

PL

the unit vector V = V 'V. The expansion "coefficients"
then are functions of the magnitude V=

~
V

~
of the ve-

locity. For the special case of a plane Couette flow with
the flow velocity v in the x direction and its gradient in
the y direction, the expansion reads

F(V) =F, +F"'&V V, +F&"&—'(V, —V')

+F(20)(V2 ~ )+ (3)

The velocity distribution function of a nonequilibrium
fluid deviates from the Maxwellian equilibrium distribu-
tion. Since transport coefficients are related to integrals
over the distorted velocity distribution, it plays a central
role in the kinetic theory which, for dilute gases, is based
on the Boltzmann equation. ' A direct test of the theory
on the level of the distribution function rather than via
the transport coefficients is desirable but experimentally
difficult. Nonequilibrium molecular dynamics can pro-
vide the wanted data for specific model systems. Here,
computer simulation results are reported for a moderate-
ly dense Lennard-Jones gas undergoing a plane Couette
flow (simple shear). A comparison with kinetic theory is
made. The present work extends previous studies on the
shear-flow- induced distortion of the pair-correlation
function of dense fluids.

The distribution of the velocities c of particles (with
mass m) of a fluid with density n is described by the ve-
locity distribution function f(c). The standard normali-
zation is ffd c=n. For convenience, the dimensionless
peculiar velocity V is introduced by

J2coV =c —v,

where v is the (local) average flow velocity and
cQ (k BT/m ) ' is a thermal reference velocity; T is the
temperature. In the following, the velocity distribution is
characterized by the function F(V) related to f(c) by

The "scalar" part F, (V) is the directional average of
F(V),

F, =(4tt) '„I F(V)a' V, (4)
Jl

where d V stands for the solid-angle element. Similarly,
the three second-rank tensorial functions F, k =0, 1,
2, are weighted directional averages of F(V),

F""'=(4tr) —'x —", J Y„(V)F(V)d'V (5)

with

V( =2V~ Vy, Y, =(V„'—V,'), Y, = —', (V,z —
—,
' ).

The dots in (3) stand for terms involving tensors of ranks
l~4.

In (local) thermal equilibrium, F, reduces to the (lo-
cal) Maxwellian F~ =tt t exp( —V ) and all other
terms vanish in the expansion (3). An integral over the
function F ' yields the x,y element of the pressure ten-
sor and is thus related to the (non-Newtonian) viscosity

g+ by

P = P F 'VdV=-8z
15

Here, y=Bv, /By is the (constant) shear rate and P
=nk&T is the ideal-gas pressure. Clearly, @@+&0 im-
plies F ' &0. Similar relations for the normal pressure
diAerences involve F and F and coefficients g
and go. Next, the partial distributions F, and F
are presented as functions of V as inferred from a
molecular-dynamics simulation.

Newton's equations of motions of N particles in a box
with volume V (determined by the number densities
n =N/V) are integrated numerically (fifth-order Gear
predictor-corrector method with a time step ht =0.005);
periodic boundary conditions are employed and con-
straints are imposed to simulate a thermostat (rescaling
of the velocities) and the linear velocity profile of a plane
Couette flow (homogeneous shear algorithm ). The
main diA'erences as compared with earlier studies
are the use of vectorized algorithms in order to take ad-
vantage of the computing capabilities of a Cray
Research (I-M; more recently, X-MP) computer and, of
course, the extraction of the additional data needed for
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the velocity distribution function. More specifically, the
quantities F„F ', F, F n of Eq. (3) are the N
particle averages of

g, a(V —V, ), g, V, V, a(V —V, ),

g, —,
' (V„' —V,')S(V —V, ), g, (V,' —

—,
' )S(V—V, ),

respectively. In the calculation, the velocity space is di-
vided into 64 spherical shells chosen such that the aver-
age number of particles, proportional to V exp( —V ),
is about equal in each of them. This implies that the in-
tervals are broader for low speeds (V &0.2) and high
speeds (V & 2.5).

The binary Lennard-Jones potential p =4m[(cr/r) '

—(cr/r) ] (cut off at r =2.5o) is used to model the par-
ticle interaction. Characteristic scales for the energy and
the length are provided by e and o., respectively. Densi-

ty, temperature, and shear rate are expressed in reduced
units, i.e. ,

n = ncr, T = T*e/ka, y= y*cr '(e/m) '

where m is the mass of a particle. In the following the
asterisks are dropped for convenience. The data present-
ed are for the temperature T =1.2 and the number den-
sity n =0.07; further data are also available for T=2.75
at the number densities n =0.1 and n =0.01. The simu-
lation was performed for N =8 =512 particles; time
averages are over 32 consecutive runs of 5000 time steps
(or a total of 160000 time steps).

Figure 1 shows the scalar part F, of the velocity distri-
bution as function of V for T = 1.2, n =0.07 and the
shear rate @=0.06 as extracted from the simulation: a
practically perfect Maxwellian distribution, F, = FM.
The normalization and the temperature calculated with
this velocity distribution agree with the expected values
to better than 0.1%. The straight line corresponds to the
computed lnF, ——V (right scale).

In Fig. 2, F ' is displayed as function of V for the
same state point and the shear rate @=0.06. The curves

shown in Figs. 2 and 3 stem from kinetic theory, The as-
terisks mark the computed averages; the vertical lines in-
dicate the statistical error. It should be pointed out that
the integral (6) over F ' yields a value of the viscosity

g+ which is just about 1% larger than the value evalu-
ated directly from the N-particle average of the x,y ele-
ment of the kinetic part of the pressure tensor. Obvious-

ly, the errors for small velocities do not aAect the viscosi-
ty which is mainly determined by the faster particles.

Figure 3 shows the same shear-flow-induced distor-
tion now presented via the ratio F ' /FM Clearl. y, if
one divides by the number of particles present in the ve-

locity shells, the relative errors of the data points are
smaller.

Kinetic theory, based on the Boltzmann equation,
yields for the present problem, '

F ' =F~ [ —2(g+/nT) yV + ], (7)

where g+ is the non-Newtonian viscosity and the ellipsis
stands for terms involving higher Sonine polynomials. In
the linear flow regime, rl+ reduces to the Newtonian (ki-
netic) viscosity nTr with the relaxation time r, deter-
mined by collision integrals, being equal to 1.58 (in
Lennard-Jones units) for a Lennard-Jones gas at the
state point chosen. The linear approximation F
= —2yT. V FM yields the curve shown in Fig. 2 and the
straight line in Fig. 3. As expected from kinetic theory
the role of the higher Sonine polynomials is not impor-
tant for pi~0. 1. The comparison between theory and
computer simulation data which does not involve any ad-
justable parameter is excellent for small shear rates.

At higher shear rates (yr~0. 1) a number of devia-
tions from the simple linear theory are expected. The
viscosity q+ occurring in (7) depends on the shear rate;
the normal pressure diA'erences P „—P», and P„—

2 (P„„+PH,), characterized by the viscosity coef-
ficients g and go, respectively, are nonzero and con-
sequently the closely related functions F and F of
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FIG. 1. The scalar part F, of the velocity distribution and
lnF, as functions of V . The logarithmic scale is indicated on
the right-hand side.

FIG. 2. The (partial) distribution function F ' for the
shear rate @=0.06 obtained from the simulation as function of
t . The statistical error is indicated by the vertical lines.
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the level of the distribution function or, alternatively, as
a test of the quality of the nonequilibrium molecular-
dynamics simulation.

An enthusiastic plea for the computation of the veloci-

ty distribution function via nonequilibrium molecular dy-
namics was presented to one of us (S.H. ) by F.R.
McCourt. This led to first feasibility studies run on the
Digital Equipment Corporation PDP-10 computer of the
Institut Max von Laue- Paul Langevin in Grenoble,
France. Calculations with sufticient statistical accuracy
as presented here were performed on the Cray Research
(1-M, X-MP) computers of the Zentrum fur Informa-
tionstechnik Berlin.

FIG. 3. The partial distribution function F ' of Fig. 2 di-
vided by the Maxwellian distribution [see Eq. (7)]. The
straight line corresponds to the result of the linear approxima-
tion, Ft "/FM = —2yrV; for y=0.06, T=1.2, n =0.07, and

y r =0.095.

Eq. (3) can be observed in the molecular-dynamics simu-
lation in analogy to F ' . Two less obvious nonlinear
features are the increasing importance of the Sonine-
polynomial contributions indicated by the ellipsis in (7)
with increasing shear rate and the deviation of F, from
the Maxwellian FM. The moment-method solution of
the Boltzmann equation presented in Ref. 8 gives good
results when applied to the nonlinear flow behavior
characterized by the viscosity coefficients. The com-
parison with the velocity distribution function, however,
requires an extended set of moments. The simplest
relevant extension yields the observed nonlinear phenom-
ena.

It has been demonstrated that nonequilibrium molecu-
lar dynamics can be applied successfully to study the
shear-flow-induced distortion of the velocity distribution
function of a gas. Excellent agreement with the kinetic
theory based on the Boltzmann equation is found in the
linear flow regime. This may be looked upon as a
quasiexperimental verification of the kinetic theory on
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