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Localization in Optics: Quasiperiodic Media
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An experiment to probe the (quasi)localization of the photon is proposed, in which optical layers are
constructed following the Fibonacci sequence. The transmission coefficient has a rich structure as a
function of the wavelength of light and, in fact, is multifractal. For particular wavelengths for which the
resonance conditions is satisfied, the light propagation has scaling with respect to the number of layers,
as well as an interesting fluctuation.

PACS numbers: 42.20.—y, 71.55.Jv

Localization of electronic states due to disorder is one
of the most active fields in condensed-matter physics. '

Recently, it has been recognized that quasiperiodic sys-
tems also could lead to localization. In a quasiperiodic
system two (or more) incommensurate periods are super-
posed, so that it is neither a periodic nor a random sys-
tem and could be considered to be intermediate between
the two.

A particularly interesting quasiperiodic Schrodinger
equation in one dimension was proposed by Kohmoto,
KadanofI, and Tang and by Ostlund et at'. This model
is based on the Fibonacci sequence which is constructed
recursively as Sj+~ = [S~-~,S&1, for j~ 1, with So =IBJ
and St = [AI, and so one has S2= [BAI, S3 ={ABA[,
54= [BAABAI, and so forth.

The most striking feature of this model is that all the
states are critical. Namely, the wave functions are not
localized exponentially but only weakly localized and
have a rich structure including scaling. ' Also the elec-
trical resistance is bounded by a power law with respect
to sample size in contrast to the exponential growth for
the localized states. The energy spectrum also has a rich
structure; it is a Cantor set with zero Lebesgue measure.
Namely, if one picks an energy, it is in a gap with proba-
bility 1 and the gaps are dense. Also there are no isolat-
ed points. The spectrum has a self-similar structure with
various scaling indices (multifractal).

There are some experiments for observing the exotic
behavior mentioned above using semiconductor superlat-
tices. However, these systems possess various additional
eAects, and it is therefore rather difficult to purely ob-
serve the effects of quasiperiodicity.

In this paper, we propose an optical experiment with
quasiperiodic layers. In this system the one-dimensional
theory is strictly valid. Also, it is feasible to construct
the system accurately and the parameter may be precise-
ly controlled and measured. Although Anderson locali-
zation occurs in a quantum-mechanical problem; howev-

er, the phenomenon is essentially due to the wave nature
of the electronic states, and thus could be found in any
wave phenomena. Recently, there have been several ex-
periments on photon ' and also phonon" localization
in random media.

Let us consider a multilayer in which two types of lay-
ers 2 and B are arranged in a Fibonacci sequence. In
order to understand the light propagation in this media,
first consider an interface of two layers. (See Fig. 1.)
The electric field for the light in layer 2 is given by

where n~ and n~ are the indices of refractive of 2 and B,
respectively, and the angles 0& and Oz are shown in Fig.
1. Snell's law is sinH~/sinHtt=ntt/n~ It is conve. nient to
choose the two independent variables for the light as

E =(E ' —E )/t. (3)

(&) (2)
B ~ B

(l) (l)
,kB

FIG. l. Electromagnetic wave propagation across an inter-
face of two layers.

+Eg" exp[i (It"'x —tot) J

The electric field in layer B is given by the same expres-
sion with subscript 2 replaced by B. We consider a po-
larization which is perpendicular to the plane of the light
path (TE wave). The appropriate boundary condition at
the interface gives

p (1)+p (2) p ([)+p (2)

n~ cosH~ (Eg' —Eg ) =ntt cosHtt (Ett' —Ett ),
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Then (2) gives

E+
TBAE (4)

For the case nA =nB there is no quasiperiodicity and one
has I=O as expected. The transmission coefficient T is
given in terms of the matrix M~ as

where TBA is given by

1 0
TBA 0 n~ cosH~/n8 costi

Also we define

TAB TBA
—

1

1 0
0 ng cos Hg/ng cos Hg

and

6~ =nq kdq/cos Hq,

where k is the wave number in vacuum, and dA and dB
are the thicknesses of the layers.

Now we are ready to consider the light propagation
through a Fibonacci multilayer S~ which is sandwiched
by two media of material of type A. There are F~ layers
in S~, where F~ is a Fibonacci number given recursively
as F~+ 1

=FJ +F~ —i, for j~ 1, with Fo =F i
= 1. For one

layer A and two layers BA, the light propagations are re-
spectively given by

The matrices TBA and TAB represent the light propaga-
tion across interfaces 8 A and A 8, respectively.
The propagation within one layer is represented by

cos6A —sin 6A

sin 6A cosBA

for a layer of type A, and the same expression for TB in
which 6A is replaced by 6B. The phases are given by

6~ = n~ kd~/cos H~

where ~MJ ~
is the sum of the squares of the four ele-

ments of M&. This is a quantity measured experimental-
ly and has a rich structure with respect to a variation of
either the wavelength of the light or the number of lay-
ers.

Let us consider the simplest experimental set ting.
Take the incident light to be normal, (i.e., H~ =H~ =0)
and also choose the thickness of the layers to give
6~ =6g =8 (i.e., n~d~ =n~d~). For B=mzz ( —,

' wave-
length layer) we have 1=0 and the transmission is per-
fect. For 6=(m+ —,

' )rr( —,
' wavelength layer), I is max-

imum and the quasiperiodicity is most effective. (See
Fig. 2.)

ln addition, the 6 = (m+ —,
' ) n case has the very special

feature that the map (10) has a six-cycle, namely,
M~ =M~+6 for any j. ' This implies that the transmis-
sion coefficient T has scaling about 6=(m+ —,

'
)zc. This

is exemplified in Fig. 3 in which T is plotted against 6'

about —,
'

rr for Si2 (233 layers). This is similar to the
lower plot of Fig. 2 for 59 (55 layers). Note the scale
change of 6' in the two figures.

In order to understand this scaling first we mention

M i
= TA, M2 = TAB TBTBA TA. (9)

It can be shown that for Fz layers, i.e. , 5&, the corre-
sponding matrix M~ is calculated as

2TI

M) =M, 2M, (10)

I =X~+ ] +X~ +X~.—] 2X~. + &X~X~ —i 1,2 2 2

where x~ = —,
' TrM~. This constant of motion is always

positive and represents the strength of the eA'ect of quasi-
periodicity. From (9) and (10), I is explicitly written as

2
nB cosOB

nA cosOA

nA cosOAI =
4 sin 6A sin BB

nB cosOB
(12)

with an initial condition (9). This equation is the same
as the renormalization-group equation for a quasiperiod-
ic Schrodinger equation ' and has been extensively stud-
ied. ' ' It can be considered as a dynamical map and
possesses a constant of motion

1.398 0 1.5 Tl 1.6020

FIG. 2. The transmission coefficient T vs the optical phase
length of a layer 6 for a Fibonacci multilayer 59 (55 layers).
The indices of refraction are chosen as n~ =2 and ng =3.
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FIG. 3. The same as Fig. 2 for S~2 (233 layers). Note the
difterence of the scale of 6 from Fig. 2.

that the (quasi)resonance condition for a wavelength is
that xj = —,

'
TrM& is bounded. If xj is not bounded, it

grows as xJ -exp&', where p = (J5+ I )/2 is the golden
mean. This leads to an exponential growth of R/T [R is
the reflection coefficient (I —T)] as a function of the
number of layers N (Note that . N for S~ is given by the
Fibonacci number F~ which grows as p~). In fact, the
trace xj obeys the recursion relation,

xj+] =2xjxj —
1 xj —2~

with an initial condition,

(14)

xo =x] =cosB,

x2 =cos 8[(ng/nii+ nrem/ng )/2]sin 6.

Thus, in order to locate the resonant wavelengths, one
looks for 6 such that the corresponding initial condition
(15) gives a bounded orbit of the map (14). Apparently
we have a six-cycle for the map (14) at 8=(m+ —,

'
)rr,

since it is a subdynamical map of (10) which we know to
have a six-cycle. Hence 6=(m+ —,

' )rr satisfies the reso-
nance condition. The behavior of the orbits around the
six-cycle is represented by a linearized equation, which
determines the scaling behavior of the transmission
coefficient. The eigenvalue of the linearized equation
gives the scale factor, which is exactly calculated' as
[1+4(1+I) ]'~ +2(1+I) This gives the scale . change
of 6 between the lower plot of Fig. 2 for S9 (55 layers)
and Fig. 3 for S~2 (233 layers).

For the resonant case, the growth of R/T is bounded
by a power of N. For the B=(m+ —,

' )rr case the ex-
ponent is exactly given by 2 ~1 (n~n/ng) ~/(31np). This
result is obtained from the analysis of the six-cycle of the
full dynamical map (10). In addition to the power-law
growth, R/T corresponding to a cycle of x, has scaling
properties and also fluctuates as N is varied. The fluc-
tuation grows as N, and so the comparison to the univer-
sal conductance fluctuation' of disordered systems is an

interesting problem. More details of the behavior of
R/T will be published elsewhere.

The resonance condition gets harder to satisfy as the
number of layer N is increased, and eventually it is not
satisfied for almost all 6' as N ~. However, the reso-
nance points do exist and form a Cantor set with Lebes-
gue measure 0. The transmission coefficient T as a func-
tion of 6 becomes singular as N ~ and, in fact, it is a
multifractal. ' There are infinitely many scalings in
which only the most prominent one at 6=(m+ —,

' )n is
discussed here.

In summary, an optical experiment with a Fibonacci
multilayer is proposed. The quasilocalization (critical
state) of the electromagnetic wave can be verified experi-
mentally through the multifractal nature of the trans-
mission coefticient.
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