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The dielectric constant ¢ and magnetic permeability u for a gluon plasma are calculated from the
one-loop gauge-invariant effective action. The real parts are gauge-fixing independent and agree with

earlier work. The imaginary part of u !

is zero in any covariant background-field gauge, while the

imaginary part of € is gauge-fixing dependent and negative definite. This result indicates that there is no
consistent perturbative description of gluonic plasmons on a scale = (g27) .

PACS numbers: 12.38.Mh

There is strong evidence, mainly based on computer
simulations, that pure Yang-Mills theory exhibits a low-
temperature confined phase and a high-temperature
deconfined phase also referred to as a gluon plasma
(GP). A fair number of results concerning the thermo-
dynamics of the GP is by now well established. There is
a high-temperature perturbative expansion for the free
energy, which has no infrared (IR) divergences to order
g>, provided one performs a proper resummation of
graphs corresponding to the insertion of the electric
mass.! It is also understood that the perturbative expan-
sion of the free energy breaks down at order g¢ due to
uncontrollable IR divergences. It is commonly speculat-
ed that these divergences are related to the nonperturba-
tive generation of a magnetic mass mmag~g2T, which is
the (dimensionful) coupling constant of the correspond-
ing three-dimensional theory obtained by dimensional
reduction.?? Moreover, in a recent work Nadkarni has
shown how the high-T perturbation expansion for the
electric screening mass breaks down at next-to-leading
order.* Finally, it has been conjectured by DeTar’
that at the scale g27 the plasma exhibits dynamical
confinements in the sense that no colored modes are
propagating.

In order to understand the physics of the GP,
knowledge of the static properties, i.e., the thermo-
dynamics, is necessary but not sufficient. Of equal im-
portance are the dynamical properties related to trans-
port coefficients and response functions, and much work
has been devoted to this subject.®=® In particular, the
spectral properties (i.e., dispersion relations) of plasma
oscillations have been studied in detail. Since these
properties are related to Green’s functions rather than
thermodynamical derivatives of the partition function,
one is faced with serious problems related to gauge
dependence. In the approach advocated by Kapusta and
Kajantie,” and by Heinz, Kajantie, and Toimela,® the
thermal expectation value of the retarded commutator of
the colored electric fields is related to a linear response
function much like in QED. In this paper we shall ap-
proach the problem differently. Using the background-
field method and a covariant background-field gauge,’

we construct a gauge-invariant one-loop finite-temper-
ature effective action I'. This object contains all infor-
mation about the plasma to lowest nontrivial order in #,
and is of the form
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where E and B are the color field strengths and the
coefficients ¢, u, k, etc., depend on the rotational- and
gauge-invariant operators 7 V°, (V°)2 and V2. The dots
stand for higher-order terms in the (covariant) derivative
expansion which is possible at high temperature since T
provides a mass scale. The coefficients in this expansion
are generalized response functions, and of particular in-
terest are the dielectric constant ¢ and the magnetic per-
meability y4 which determine the linear response of the
plasma. One can consider I' as a classical action and
study the corresponding mean-field equations. As will be
seen below, there is a serious problem in that these equa-
tions are not gauge-fixing independent. We stress that
the two issues of gauge invariance and gauge-fixing in-
dependence are separate, and that usually the second
does not follow from the first. For instance, although
I'[A4;a] is manifestly gauge invariant, it does depend
parametrically on the gauge-fixing parameter a. At zero
temperature, Abbott has shown that the S-matrix ele-
ments obtained from the on-shell amplitudes are a in-
dependent and coincide with those obtained from the
conventional generating function.'® We shall return to
the issue of gauge-fixing dependence below. The mean-
field equations derived from (1) are nothing but the
Maxwell’s equations in a medium characterized by ¢ and
H,
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where L and T refer to longitudinal and transverse
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modes, respectively. To evaluate € and y we express the
effective action in terms of the gluon polarization tensor
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where Iy is the classical action. A comparison of (1)
and (4) yields
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The actual calculation of Iy and INg =3 ;I1; in a gen-
eral covariant background-field gauge is rather lengthy
and is described elsewhere.!'! To discuss plasmons, we
shall consider the kinematical region 7> w> |k|. In
this limit the general results given in Ref. 11 reduce to
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where, for the gauge group SU(N),
w§=§—w12)=é—Ng2T2, (10)

and a is the gauge-fixing parameter (@ =1 corresponds
to Feynman and «=0 to Landau background-field
gauge). Note that the real parts of ¢ and u are gauge-
fixing independent and that the imaginary part of u van-
ishes for all a. Equations (7) and (9) imply that the
plasmon frequency is not only gauge invariant but also
gauge-fixing independent.'> The dispersion relation is,
however, not real, and with the notation

w=w, iy, 1)
the plasmon damping constant y is given by
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The negative sign of y corresponds to antidamping, i.e.,
plasmons with exponentially growing amplitudes.!® Be-
fore we proceed to discuss this rather surprising result,
we shall comment on some objections that have been
raised against the use of covariant gauges to calculate
plasmon properties. The first objection maintains that
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covariant gauges do not allow for a Hamiltonian formu-
lation and that this implies that a linear-response theory
is not possible.7 However, a covariant Hamiltonian ap-
proach (based on Becchi-Rouet-Stora-invariant physical
states) does exist,'* and has been used to derive thermal
Green’s functions in covariant gauges.'> The second ob-
jection concerns the lack of gauge invariance. Although
this criticism is clearly valid for ordinary covariant
gauges, it does not apply to our calculation which is
manifestly gauge invariant. Thus we can see no reason
for not taking the result in (13) for y as seriously as the
results found in temporal and Coulomb gauges. Now we
must face the fact that y is gauge-fixing dependent
and thus at least superficially without any physical
significance. (Note that in neither the axial- nor the
Coulomb-gauge calculation was the possible gauge-fixing
dependence of the plasma parameters studied, since a
singular é-function-type gauge was understood through-
out. It is very likely that gauge-fixing dependence is a
problem in any gauge.) One way to proceed is to impose
further consistency conditions on I' in order to define the
mean-field equations uniquely.'® This was done recently
by Vilkovisky in the context of the invariance of quan-
tum effective actions under reparametrizations of the
classical background field.!” His main observation was
that the definition of the classical field in terms of expec-
tation values of the quantum field is not unique. The ori-
gin of this arbitrariness is that, unlike the action S which
is a scalar on the space of gauge-field configurations, the
source term J,Q*, where Q* is the quantum field, has no
such geometrical meaning. Vilkovisky’s method consists
in replacing the source term with a scalar object which
coincides with JQ at tree level. To one loop, one can
show that the resulting ““unique effective action” is iden-
tical to the background effective action defined by (1) in
Landau gauge (i.e.,  =0).

However, since Vilkovisky’s action simply amounts to
setting @ =0 in (8)-(10), the problem of antidamping
remains. Unstable solutions are physically unacceptable,
and so we seem to face two possibilities. The first possi-
bility is simply a breakdown of the linear approximation,
in which case nonlinear terms like E- (ExB), etc., in (1)
become important and could provide damping. In this
case one might still have a consistent perturbative (albeit
nonlinear) description of gluonic plasmons. The second
possibility is that (13) signals a real breakdown of the
loop expansion, already at the one-loop level. Note that
the (anti)damping occurs at the scale g27 where one ex-
pects a nonperturbative generation of a magnetic mass
and the onset of dynamical color confinement. Static
color charges are deconfined and screened at high tem-
peratures, but dynamical excitations such as plasma
waves seem to have an entirely different behavior. We
can speculate that the antidamping of the plasmons is
yet another signal of the breakdown of perturbation
theory at the magnetic scale g27T. If so, even a crude
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description of the transport properties of the quark-gluon
plasma might require nonperturbative techniques. In-
deed, collective motion, whether analyzed by linear-
response theory (plasmons) or by hydrodynamics (flow
and shocks), is essentially a long-wavelength phenome-
non, and thus sensitive to the IR structure of hot QCD.
The consequences of this are numerous. For instance,
both the equation of state and the quark-gluon chemistry
for the plasma might have to be seriously revised.
Transport and hydrodynamical equations should be
sought for a fluid of color-singlet excitations rather than
free quarks and gluons. Signatures for the plasma for-
mation have to be reconsidered accordingly.
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