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Exploring Chaotic Motion Through periodic Orbits
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The fractal invariant measure of chaotic strange attractors can be approximated systematically by the
set of unstable n-periodic orbits of increasing n. Algorithms for extracting the periodic orbits from a
chaotic time series and for calculating their stabilities are presented. With this information alone, im-

portant properties like the topological entropy and the HausdorfI' dimension can be calculated.
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It can be said with some confidence that many attrac-
tors that belong to the borderline of chaos are presently
well understood. Now-classical examples are infinitely
period-doubled attractors, ' critical orbits on the two-
torus with quadratic irrational winding numbers, etc.
We know how to construct scaling functions for these
sets and how to calculate their f(a) or generalized di-
mensions D~ from first principles, and the results agree
extremely well with experimental realizations. Quite
in contrast, once we enter the chaotic regime it appears
that we understand very little. We have no quantitative
description of the apparent self-similarity of chaotic,
strange attractors.

The reason for the success with borderline fractal sets,
and for the failure with chaotic fractal sets, is that we
know how to approach the former hierarchically via a
series of nonfractal sets of increasing complexity. We
approach an infinitely doubled orbit with 2 -periodic or-
bits. ' We approach a golden-mean orbit on the two-
torus with orbits that have rational winding numbers
(i.e. , ratios of Fibonacci numbers). This allows for the
renormalization and understanding of these sets. In con-
tradistinction, it appears that we do not know how
hierarchically to approach chaotic sets with nonfractal
sets.

The aim of this Letter is to point towards a possible
remedy of this situation. The basic idea is not new; it is
well known that chaotic orbits are closures of the set of
unstable periodic orbits. The two new statements of
this Letter are the following: (a) We can extract all the
periodic orbits of order n, for n not too large, straight
from the chaotic orbit, and calculate their stabilities
(Lyapunov exponents). (b) This information can be
used to describe important properties of general chaotic
sets.

In particular we shall use just the periodic orbits to
calculate the fractal dimension and the topological entro-
py of the strange attractor. We shall argue that the
number of the periodic orbits, their distribution, and
their properties unfold the structure of chaotic orbits. If
we want to know whether two experimental attractors
are the same (up to possible smooth change of coordi-
nates), or if we want to assert that a theoretical model
faithfully reproduces an experimental attractor, this in-
formation is crucial for a meaningful comparison.

We first explain how we extract the periodic orbits
from an experimental chaotic time series, and how to
calculate their eigenvalues. Assume knowledge of a time
series lX;l;-t, with X; being points in R . Although all
the methods generalize immediately to R", the examples
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that we studied so far are in R, and so we focus on
those. If N is sufficiently large, the time series will visit
the neighborhood of an arbitrary period-n cycle point at
some time i. At time i+1 the time series will be in the
vicinity of another cycle-n point, and so on. After n

iterations the time series will again visit near the initial
cycle-n point, under the assumption that n time steps
previously the sequence was sufficiently close to it. This
idea is used to locate the periodic orbits by scanning of
the time series for pairs of points separated by n time
steps that are within a small preassigned spatial distance
(r~) of one another.

At this stage all points in the time series which return
after n steps are located and must now be grouped into
periodic cycles. Throughout the length of the run, the
vicinity of a particular periodic point may have been
visited many times. In order to decide whether two near-
ly periodic orbits in the time series correspond to distinct
periodic orbits, their positions relative to each other are
checked. If all the corresponding pairs of points of the
two orbits are less than a preassigned distance apart
(r2), then they are grouped into the same unstable
periodic cycle. Otherwise, they represent distinct period-
ic cycles. The position of a point belonging to a true un-
stable n-cycle is estimated by our finding the center of
mass of all the points in the time series which were found
to correspond to it.

The two externally assigned parameters r~ and r2,
used in the process of determining the almost periodic se-
quences and grouping them into cycles, are chosen by the
following criteria: r~ is chosen large enough to include
several sequences corresponding to a particular periodic
orbit. The distance between cycles, r 2, is set small
enough so as to distinguish between distinct periodic or-
bits under the condition that r2 & r ~. The correct group-
ing should not change with an increase of the length of
the time series.

In order to calculate the eigenvalues and eigenvectors
of the periodic cycles, a mean-squares procedure ' is
used to fit a 2x2 3acobian matrix to each point of a
periodic cycle. In order to calculate this matrix for a
particular cycle point, all M points in the time series
which were found to correspond to it are used. Their de-
viations [u;) from the cycle point and the deviations jv;}
of their iterates from the consecutive cycle point are used
in order to fit the matrix J which minimizes the norm

~

UJ —
V~~ where U and & are both Mx2 matrices con-

sisting of ju;l and jv;l, respectively. In order to obtain
the eigenvalues and eigenvectors for a cycle point, the
Jacobians are multiplied around the cycle in reverse or-
der and then diagonalized.

As an example of this procedure consider the para-
digmatic Henon map (x,y) (I —ax +y, bx) with a
=1.4, b =0.3. We find that in order to pinpoint all the
cycles of order n ~ 10 we need a time series of the order
of 10 points. r~ and r2 are typically of size 10 "-10
The numbers of cycle points of orders 1-10 are 1, 3, 1,
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7, 1, 15, 29, 63, 55, 103, respectively. The Lyapunov
numbers of all these cycles were calculated. To check
the validity and accuracy of our algorithms we compared
the results with "exact" calculations which use the expli-
cit knowledge of the map. (In extracting the data from
the chaotic signal as above no knowledge of the underly-
ing map is assumed. ) In this calculation one first lays a
grid of points covering the attractor. Typically the num-
ber of grid points is at least 5 times larger than the num-
ber of periodic points that one expects to find. Then
starting at each point, one solves for a periodic orbit us-
ing the map and a Newton-Raphson iteration scheme.
The difTerent periodic points are recorded, and then the
number of grid points is increased by a factor of 2 or 3 to
check that no new orbit appears. Since the map is
known, the Lyapunov exponents can be calculated exact-
ly.

It turns out that the algorithm described above works
very well. With a data file of 2X 10 points all the cycles
of length ~ 10 were captured, and the eigenvalues are
close to the exact values. In fact, most of the eigenvalues
diAer from their exact counterparts by less than 1-2%.
In the worse cases, which appear only when two cycles
are very close together and hard to resolve, the errors in
the eigenvalues may reach a factor of 2.

The knowledge of the number of periodic orbits of or-
der n allows an estimate of the topological entropy Ko. ''
The topological entropy of a dynamical system can be
defined as

1
Ko = lim —lnN„ (I)

where N„ is the number of cycle points of order n. Ac-
cordingly, we can define nth-order approximants

K,'"' =n ' lnm„. (2)
In the case considered above it is meaningful to use data
for n ~ 6 only. The results for Ko" are as follows:
K =0 451 Ko =0 481, K =0 517, K"' =0 445,
and Ko' =0.463. Evidently, the number of eight-cycles
is anomalously large. Disregarding it we estimate Ko
=0.46 ~ 0.02, in excellent agreement with previous esti-
mates. " The validity of this conclusion can be supported
by the results of the "exact" calculations. For example,
there we find 155 points of order 11 and 247 points of or-
der 12, leading to Ko" =0.458 and Ko' =0.459.

The calculation of the Hausdorfr' dimension needs fur-
ther discussion. The basic idea is that we want to con-
sider the n-order cycle points with increasing n as a
better and better approximation to the fractal measure
that is obtained from a very long chaotic run. To calcu-
late the HausdorA' dimension Do of this measure we have
to know how to cover it with balls, and how many balls
there are of radii I;. Given this information we evaluate
Do using the formula (see for example Ref. 6)

(3)
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In other words, we have to know the local scales that
characterize the set at the nth level of refinement. For
the purpose of calculating Dp it sufticient to focus on
refinement in the contracting (stable) direction only.
Each cycle point has a local stable direction with an ei-
genvalue k,' that estimates the ith local scale. In the un-
stable direction we do not refine and we say that all the
scales are of —1. The picture is therefore that of a cov-
erage with "slabs" of length 1 and of width k,'. Each
such slab can be covered with I/X, ,' balls of radius X,', and
therefore we estimate the nth-order approximants Dp"
from

for an order n that depends on the amount of data avail-
able. The theoretical message is that the unstable orbits
reveal the skeleton of the chaotic set and appear to be
crucial for the understanding of strange attractors. Fur-
ther analysis of the scaling properties of strange attrac-
tors as revealed by the underlying periodic orbits will be
published later.
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Sciences. One of us (J.P.E.) is supported by the Fonds
National Suisse.

(4)

The results of this calculation, with the eigenvalues ex-
tracted from the "experimental" chaotic run, for n =6-
10, are D =1 26, Dp =1 29, D =1 30 Dp =1 26,
and Dp' =1.27. Remembering that the eight-cycles
seem anomalous we conclude that D p

= 1.27 + 0.02,
again in excellent agreement with previous estimates. "
This conclusion can again be supported by the "exact"
calculations which show good convergence at higher or-
der cycles (we have all the cycles up to n =21) to
Dp =1.274 ~ 0.001.

Can we proceed to calculate'" Dq or Kq for q&0?
Not at this point. These quantities depend on the invari-
ant measure. The invariant measure is expected to be
nonuniform along the strips of the attractor, and to cap-
ture this nonuniformity one has to refine the description
in the unstable direction in addition to the refinement
done above in the stable direction. It appears that doing
so calls for developing algorithms to equip the cycles
found with symbolic dynamics. This is already beyond
the scope of this Letter and will be discussed elsewhere.

In summary, we pointed out that the unstable periodic
orbits can be extracted straight from the chaotic signal,
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