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Pulsed-Laser-Induced Reactive Quenching at a Liquid-Solid Interface: Aqueous Oxidation of Iron
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High-power pulsed-laser-induced reactive quenching at a liquid-solid interface is used for the first
time to synthesize a metastable form of iron oxide. The oxide phase is characterized by use of the tech-
niques of conversion-electron Mossbauer spectroscopy, Rutherford backscattering spectrometry, x-ray
diffraction, and x-ray photoelectron spectroscopy.

PACS numbers: 68.35.Fx, 64.60.My, 76.80.+y, 81.40.Gh

In recent years considerable interest has grown in the
use of high-power lasers for processing of material sur-
faces, by employment of both the thermal and photo-
chemical aspects. ' Pulsed lasers are of particular in-
terest in this regard in view of their highly nonequilibri-
um processing character, which allows synthesis of novel
phases of materials. In most of the experiments on
laser-material interactions the main emphasis has been
laid on the use of material systems in the solid state and
hardly any attempts have been made to explore the pos-
sibilities of synthesizing new materials by pulsed-
laser-induced reactions in liquid media and at liquid-
solid interfaces. Work has been reported in the litera-
ture on laser-induced changes in chemical etching rates
of solids in liquid media '; however, such studies em-
ploy laser power primarily to activate the surface-
mediated physico-chemical processes and do not involve
massive energy transfer to the interface leading to in-
teresting synthesis possibilities. In this Letter we report
the results of our experiments performed specifically to
explore the latter concept. To our knowledge this is the
first study of its kind to be reported in the literature.

In the work presented here we have studied the influ-
ence of high-power Q-switched ruby laser pulses (30-ns
pulse width) on the interface between iron and water.
This system is useful as a vehicle to promote the basic
idea because the ruby radiation (A. =0.694 pm) is
transmitted by water and absorbed by iron, leading to
major energy deposition into the interface region. Also,
since water can chemically react with iron via aqueous
oxidation, this system is capable of revealing the reactive
aspect of the quenching process.

The iron foils used in these experiments were obtained
from Goodfellow metals and were 99.999% pure. These
foils were appropriately microetched prior to use. Four
characterization techniques, viz. conversion-electron
Mossbauer spectroscopy (CEMS), " ' Rutherford
backscattering spectrometry (RBS), x-ray diffraction (in
normal-incidence as well as glancing-angle geometries),

and x-ray photoelectron spectroscopy (XPS), were used
to study the samples. The Mossbauer spectra were
recorded by use of a Co:Rh source. The glancing-
angle x-ray patterns were obtained on a Rigaku (Japan)
machine by keeping the glancing angle of incidence fixed
at -6 . XPS results were obtained on a VG Mark-IV
system.

The specifications of different samples studied are as
follows: sample No. 1, virgin iron foil; samples No. 2
and No. 3, iron foils treated with laser pulses underwater
at energy densities of 10 and 15 J/cm, respectively;
sample No. 4, iron foil treated with laser pulses in air at
an energy density of 10 J/cm . In order to enhance the
effects, each spot was irradiated twice.

The CEMS results for samples Nos. 1-4 are shown in

Figs. 1(a)-1(d), respectively. In analysis of the CEMS
data it must be remembered that each CEMS spectrum
represents the state of the sample over a depth of -0.25
pm below the surface. The RBS results for samples No.
1 and No. 2 are given in Fig. 2 and these help reveal the
modifications occurring over a depth of —1 pm. The x-
ray diffraction data for samples No. 2 and No. 4, which
are of interest from the standpoint of comparison be-
tween laser treatment in liquid and air ambients, are
given in Fig. 3. The corresponding XPS results are
presented in Fig. 4.

The CEMS spectrum of Fig. 1(a) shows a single sex-
tet contribution which corresponds to a-Fe (internal
magnetic field = 330 kOe), while the spectrum of Fig.
1(b) shows two significant quadrupole-split doublets in

addition to a-Fe. One of the doublets has an isomer shift
(IS) of 0.85 mm/s and a quadrupole splitting (QS) of
0.64 mm/s; while the other doublet has an IS of 1.09
mm/s and a QS of 0.65 mm/s. The two doublets togeth-
er correspond to the FeO phase, the IS values being
somewhat higher than the values reported for this phase
by Elias and Linnett. ' The gradation of composition
over the 0.25-pm depth scanned by the CEMS technique
could be responsible for such differences. As the RBS
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FIG. 2. Rutherford-backscattering spectra of virgin iron foil
ashed line) and iron foil laser treated in H 0

ensi y o /cm (dotted line). The spectra were recorded
by use of a 2-MeV He+ beam.
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FIG. 3. X-ray diffraction patterns for (a), (c) an iron foil
laser treated in H20 and (b), (d) an iron foil laser treated in
air. The energy density in both cases is 10 J/cm2. The pat-
terns in (a) and (b) are recorded in glancing-angle geometry,
while (c) and (d) are recorded in normal-incidence geometry.

FIG. 4. X-ray photoelectron spectroscopy (XPS) results for
(a), (c) an iron foil treated in H20 and (b), (d) an iron foil laser
treated in air. The Fe 2p and 0 1s contributions represented
by curves 1, 2, 3, 4, and 5 correspond respectively to chemical
states at depths of 0, 500, 2000, 3000, and 4000 A below the
surface.

Mills and Sullivan in the context of the FeO phase. This
proves beyond doubt that we have an FeO phase in the
top surface layer. The 0 1s features in the case of the
FeO phase have also been discussed by Mills and Sul-
livan and our results are in good agreement with these as
well. The Fe 2p and 0 1s contributions indicated by
lines 3, 4, and 5 in Fig. 4(c) represent the chemical state
of the oxygen-deficient Fe-O coordination, seen in the
RBS and XPS depth profiles.

The x-ray diffraction pattern for sample No. 2 ob-
tained in normal-incidence geometry [Fig. 3(c)] allows
us to explore further the features of the oxygen-deficient
Fe-0 coordination mentioned above, since in this
geometry the x rays penetrate deeper. The positions of
diffraction lines in Fig. 3(c) can be explained by the as-
sumption that contributions of a-Fe and an oxygen-

deficient FeO-like coordination having a lattice constant
of 4.03 A coexist in the region explored. On the basis of
Vegard's law, applied to a-Fe (lattice constant 2.86 A)
and near-stoichiometric FeO (lattice constant 4.3 A),
one can easily obtain the composition of oxygen-deficient
Fe-0 coordination to be —Feqs04q, which is reasonably
consistent with the RBS result.

In order to see whether an increase in the laser energy
density has a significant influence on the stoichiometry
and the basic pattern of observations, we irradiated an
iron sample under water at an energy density of 15
J/cm . The corresponding CEMS spectrum [Fig. 1(c)]
has features similar to those of the spectrum of sample
No. 2 [Fig. 1(b)], the IS (QS) values of the doublets be-
ing 0.74 (0.72 mm/s) and 1.06 mm/s (0.82 mm/s),
which are closer to the values reported by Elias and Lin-
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nette. ' Since an enchanced energy density is expected
to enhance the overall process time scale, it could lead to
better stoichiometry.

Finally, it is useful to bring out the differences in the
results of processing in liquid and in air, by comparison
of the states of samples No. 2 and No. 4. Surprisingly,
the air-treated sample (No. 4) shows a significant contri-
bution of y-Fe phase' (singlet with an IS of —0.001
mm/s) in addition to a small contribution of FeO-like
phase and a contribution due to a-Fe. The presence of
y-Fe can also be inferred from the x-ray diffraction re-
sults of Figs. 3(b) and 3(d). The XPS results for sample
4 [Figs. 4(b) and 4(d)] show that the major quantity of
the oxygen incorporated in this sample exists in the sur-
face region up to a depth of -600 A and in the thick
underlying region only a dilute concentration of oxygen
exists. This oxygen could be responsible for stabilizing
the y-Fe phase, which is not known to be stable in pure
form at room temperature except in the form of epitaxial
films on fcc substrates. ' It may be noted that FeO is it-
self a fcc structure and its formation in distributed re-
gions could help the growth of the fcc phase of iron. The
issue of stability of y-Fe is yet to be fully understood and
its presence in our sample remains an interesting subject
to be explored further. Nevertheless, our results present-
ed here clearly demonstrate that processing in liquid and
air ambients lead to characteristically different results.

We believe that three mechanisms could play an im-
portant role in the reactive quenching process reported
here: (i) thermodynamic evaporation and chemical reac-
tions at high pressure and temperature; (ii) redeposition
of reaction products via rapid rerandomization of atomic
trajectories due to the presence of high local pressure;
and (iii) convective motions in fluid state being set in by
instabilities rendered by high concentration and temper-
ature gradients. The relative contributions of these
mechanisms would vary depending upon the laser energy
density and pulse duration, properties and reactivities of
participating materials, etc. We do not expect that boil-
ing, leading to significant cavitation, would occur at least
during the early stages of reaction kinetics because of in-
trinsic difficulties which may be encountered in satisfy-
ing the nucleation requirements. Berti et al. ' have dis-
cussed these and related issues in their paper on
pulsed-ruby-laser treatment of silicon in gaseous envi-
ronments at different pressures. Considerable work is
required to be done before a reasonable degree of under-
standing regarding the processes involved can be
reached.
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