
VOLUME 58, NUMBER 22 PHYSICAL REVIEW LETTERS 1 JUNE 1987

Evidence for Quasi Two-Dimensional Positronium Formation in Potassium-Intercalated Graphite
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Two-dimensional angular correlation of annihilation radiation (2D ACAR) experiments have been
performed to study the electron-positron momentum densities in potassium-intercalated graphite and
in highly oriented pyrolytic graphite. Magnetic-field —dependent experiments indicate that the high-
intensity, anisotropic 2D ACAR component observed in C24K is at least partially due to quasi-2D posi-
tronium formation. In the highly oriented pyrolytic graphite 2D ACAR spectra, a low-intensity, nearly
isotropic, thermally activated positronium component is found.

PACS numbers: 71.25, Pi, 36.10.Dr, 71.60.+z

Graphite-intercalation compounds (GIC's) have been
the subject of extensive experimental and theoretical
studies. ' Alkali-metal intercalates (AGIC's) exhibit a
rich variety of quasi two-dimensional (2D) phenomena;
however, details of their electronic structure, such as
charge transfer and the nature of the interlayer band,
are still not fully clarified. Positron (e+) annihilation
experiments, using the technique of angular correlation
of annihilation radiation (ACAR), can yield the
momentum density of the electrons (e ) sampled by the
thermalized e+; in metals ACAR spectra exhibit discon-
tinuities that map out the Fermi surface (FS). In some
insulators, however, the e+ forms positronium (Ps),
yielding narrow ACAR components that reAect the
motion of the Ps atom. In a series of papers, Cartier et
al. reported e+ data from various GIC's, using "long-
slit" geometry that yields the 1D projection of the e
e+ momentum density (1D ACAR). In most AGIC's
they observe an anisotropic, high-intensity momentum
component with its narrow dimension along the carbon
planes, and interpret this as e+ annihilation with a near-
ly free, low-density 2D e gas.

In this Letter we present evidence that at least part
of the anisotropic component in stage-two potassium-
intercalated graphite (C24K) is due to e annihilation
from a quasi-2D Ps state rather than from direct annihi-
lation with conduction electrons, thus casting some doubt
on the FS interpretation of Cartier et al. Our evidence
is based on magnetic-field-dependent measurements us-
ing the more sensitive "point-slit" geometry that yields
2D projections of the e e+ momentum -density (2D
ACAR). For comparison, we also have studied 2D
ACAR spectra in samples of highly oriented pyrolytic
graphite (HOPG). ' We observe a narrow, thermally ac-
tivated component which we also assign to Ps formation;
the Ps component in HOPG, however, is more isotropic
and far less intense than in C24K. The discovery of near-
ly 2D Ps formation in C24K opens the possibility of many
new e+ and Ps experiments in layered compounds, and
challenges theoretical modeling involving 2D Ps interac-
tions with low-density conduction electrons.

The 2D ACAR experiments have been performed with

the 32X32 NaI(T1) multidetector system described ear-
lier. The spectra were obtained on a 0.4&0.4-mrad
mesh [I mrad=mc x (10 momentum units)], with a
set of 1.5- or 0.75-cm-diam Pb collimators, and a 10-m
detector-to-sample distance. Co e+ sources of up to
500 mCi were used, placed 1 cm from the sample be-
tween the pole faces of a 23-kG magnet. The samples
were mounted on a variable-temperature copper stage, in
a 10 -Torr vacuum. The AGIC samples were prepared
from 6X 8-mm slabs of HOPG cleaved to =1 mm
th ickness. They were transferred rapidly via a dry-
argon-filled plastic bag into the sample chamber, which
was then evacuated. The stage of the intercalates was
identified by color. The normal to the sample surfaces
was along the c axis; as in HOPG, the crystallites are
randomly oriented in their basal plane. '

The 2D ACAR spectrum represents the projection
JV(p~~, p ) =fp r(p)dp' of p r(p), the 3D momentum
density of the e e+ pair, wh-ere p~ (p~~) is & (II ) to
the c axis, and p& is along a line joining the detectors
and the sample (p&xp& =p~~). In Figs. 1(a) and 2 (top)
we plot the spectrum for HOPG at 100 K, in perspective
and in contour-line form, for better visualization. The
distribution is bimodal with a saddle point at (p ~~,

p~) =(0,0). The large anisotropy was observed a long
time ago in a 1D ACAR experiment; the lobes were ex-
plained in terms of a delocalized interlayer e+ sampling
preferentially the z electrons. The projection of the
graphite Brillouin zone onto the (p~~,p~) plane leads to
lines 3.6 mrad apart, corresponding to the hexagonal
faces; the faces parallel to c are rotated randomly in
HOPG, between p& =5.70 mrad (I M) and p& =6.58
mrad (I K). We see from Fig. 2 (top) that the thermal-
ized e+ samples electrons with momentum amplitudes in
several zones along the c direction; in the p~ direction,
however, their amplitude decreases rapidly outside the
first zone indicating nearly free-electron behavior along
the carbon planes. The FS of graphite encloses too
small a volume to be detectable in our 2D ACAR spec-
trum.

The e -e+ momentum density changes drastically
upon intercalation. Figures 1(b) and 2 (bottom) show
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of K intercalates as well as to other GIC's; lifetime ex-
periments will also be performed. Should Ps formation
occur in all stages where the narrow momentum com-
ponent appears, a more quantitative model describing
thermalized e+ behavior and Ps formation can emerge.
Since Cartier et al. have found that the intensity of the
narrow momentum component does not have a simple
stage dependence, such a model could require a stage-
dependent e+ trapping picture similar to that proposed
by them.

In summary, we have studied the electron-positron
momentum densities in HOPG and C24K by the 2D
ACAR technique, and have presented evidence for a 2D
positronium state in C24K.
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