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Length-Independent Voltage Fluctuations in Small Devices
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Conductance fluctuations in one-dimensional lines of length L shorter than the phase-coherence length
L& are not universal but diverge as L . Using the Onsager relations and voltage additivity, we show
that the voltage fluctuations are independent of the distance between voltage probes. The antisymmetric
(Hall-type) contribution to the voltage fluctuations is constant for all values of L Mea.surements of the
voltage fluctuations and correlation function between diferent regions in Au and Sb lines confirm these
results.
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It has recently been shown that the low-temperature
transport properties of very small normal-metal wires ex-
hibit unexpected quantum interference behavior. In the
limit where the phase-coherence length L& of the elec-
trons is comparable to the sample size L, the conduc-
tance exhibits sample-specific' random fluctuations as a
function of magnetic field or Fermi energy. Theoreti-
cal calculations have shown that the rms value of the
fluctuations is "universal" ' and (AG) =e /h when

L=L&. These conductance fluctuations have been ob-
served in a wide variety of systems ' for L ~L& and
found to be in quantitative agreement with the theory.
The magnitude of the fluctuations decreases with energy
averaging and ensemble averaging ' ' over in-
coherent regions. The results of the universal conduc-
tance theory were derived by calculation of the
transmission coefficient for a long sample connected by
two perfect leads to infinite reservoirs. The phase-
coherence length in this model can never be larger than
the distance between reservoirs. On the other hand,
most experiments employ a four-probe measuring config-
uration and it is possible to fabricate voltage probes
which are separated by distances by less than L&. The
connecting leads are generally fabricated from the same
material and must be included in the computation of the
fluctuations. Without losing phase coherence, electrons
can propagate into the leads up to a distance L&. In this
Letter we show that in the limit L&& L, where L is the
distance between voltage probes of a four-wire measure-
ment, the conductance fluctuations diverge as h, G
—(e '/h ) (L,/L ) '.

In a typical experimental arrangement, a constant
current is applied to a long line and the voltage between
two points separated by a distance L is measured as a
function of the applied magnetic field, H. The root mean
square (rms) value of the voltage fluctuation hV is given
by h, V=IR hG, where R is the classical average resis-
tance between the voltage probes, and AG is the rms
value of the conductance fluctuations. For the case
L & L&, a classical approach ' assumes that the fluctua-
tions in each part of the sample of length L& are uncorre-
lated so that the square of the fluctuations is additive.

AV(L)+L2) ~ AV(L))+BV(L2),

B,V(Li) ~ AV(Li+L2)+&V(L2) (2)

In analogy with the classical addition of fluctuations dis-
cussed above we assume that the voltage fluctuations
have a power-law dependence on L, hV(L) rrL'. Consid-
ering L~ =L2 in Eq. (1), we obtain a ~ 1. Taking the
limit as L

~ 0 with L2 kept constant in Eq. (2) we find
a ~ 0. Thus, the length dependence of the total voltage
fluctuations must be bounded by a constant value and a
linear variation.

Experiment' and theory' ' have shown that in any
four-wire measurement upon reversal of the magnetic
field, the measured voltage (or conductance) fluctuations

L2

FIG. 1. Typical six-lead sample configuration.

This yields the result 6 V ~ h Vr, (L/Lr, ) '~ with 6 V&

=IRr, e /h where R& is the resistance of a wire of length
L&. Using the relation R = (L/Lr, )R& we obtain AG
~(e /h)(L/Lr, ) ~ . This classical addition of quantum
fluctuations has been proven theoretically' and by ex-
periments on arrays of rings' and single lines. '

Using some simple general properties, we will demon-
strate that for L & L& the conductance fluctuations must
have a diflerent dependence on the ratio L/L& than dis-
cussed above. The rms voltage fluctuations d V measured
between two points x2 and x3 on a given line can be de-
scribed by a function AV(L) that depends only on the
distance L =x3 —x2 (translational invariance). If we
consider three points 2, 3,4 on a line separated by dis-
tances L1 and L2, as shown in Fig. 1, voltage additivity
requires that V23+ V34+ V42=0. Since the fluctuation
of one term is always less than or equal to the sum of the
fluctuations of the two others, we can write
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contain a symmetric part AV~ and an antisymmetric part
AVz. This is also true in classical electrodynamics, ' '
where in general for an inhomogeneous conductor the
elements of the resistivity tensor contain both symmetric
and antisymmetric components. The transport proper-
ties that we measure are extremely sensitive to the mi-

croscopic details of the impurity configuration, and on

the length scale of L& our samples cannot be considered
as homogeneous. One important property of the Auctua-

tions is that the antisymmetric part changes sign when

either the magnetic field or the voltage leads are reversed
as required by the Onsager relations. It has been shown
that if both the current and voltage leads are re-

V„ki(H)=Vpl;/( H) Th.e first two sub-
scripts designate current leads and the second two the
voltage leads. Both hV~ and hV~ are of the same order
of magnitude' ' for a sample of length L comparable to
L&. For the sample of Fig. 1, by using the Onsager sym-
metries and voltage additivity (VJ &t =V/t. +V) &),
we obtain

V(6 34(H) —V)6 34( —H) = V)6 z3( —H)+ V)64s( —H)+ Vzs 3((H)+ Vzs 64(H)+ V34 (z( —H)+ V34 s6( —H) (3)

The left-hand side of this equation is by definition twice
the antisymmetric part of the voltage measured over a
distance L2. By taking the rms value of the Auctuations
for the antisymmetric part of Eq. (3) we obtain
2A V& (Lz) ~ 6/t, V~ (L; ) with L; ~ max(L ~, L3).

We assume that both AV~(L) and AVs(L) have a
power-law dependence on L but allow for each to have a
diAerent exponent. In order to be able to use the same
function AV~(L) to describe the fluctuations after rever-
sal of the leads, all the leads must be of the same width
w and thickness t. The above inequality is valid for all
pairs L2, L; with L2 ~ L; ~ w; therefore the antisym-
metric part of the voltage Auctuation cannot be a
power-law function of the length L with a positive ex-
ponent. Since a cannot be less than 0, we arrive at our
primary result that the antisymmetric part of the voltage
fluctuation must be constant for both cases w & L & L&

and L & L&. For perfect point voltage probes with the
separation L & w we cannot make any prediction except
that there must be some correlation length g ~ w such
that when L ( g, the fluctuations AV~ start to decrease.
Since experimentally' AVz=h, V& for L=L&, we have
AV~ =chV& and hG~ =c(e /h)(Z/Lr, ), where c is a
constant of order unity. The total rms Auctuation can
never be smaller than the antisymmetric contribution;
therefore a dependence h, V ~L' with a & 0 is not allowed
for L & L&. The final result is that the total measured
voltage Auctuation must be constant for w & L & L~,
and all our results are summarized in Table I.

We have measured the voltage fluctuations in long

lines made from antimony and gold, with typical widths
and thicknesses ranging from 0.03 to 0. 1 pm. Voltage
leads of similar dimension and material were connected
alternately to each side of a line at distances varying
from 0.2 to 1.8 pm. One of our samples is shown in the
inset to Fig. 2(a). By selecting difterent leads, we can
measure the Auctuations for fifteen diferent lengths be-
tween 0.2 and 4 pm. The devices were lithographically
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TABLE I. Summary of the results for the total and anti-
symmetric contributions to the voltage and conductance fluc-
tuations in a line as a function of the ratio Z/Z& The rms volt-.
age fluctuations are normalized to h, V& and the conductance
fluctuations are in units of e /h. a, h, and c are constants of or-
der unity.

FIG. 2. (a) Measured rms voltage fluctuations normalized
by AV~, as a function of (Z/L~)'~2. The symmetric contribu-
tions are represented by solid symbols. The solid line
represents the expected behavior for L & L~. The antisym-
metric part of the voltage fluctuations is represented by the
open symbols and the dashed line is the predicted constant be-
havior. The symbols refer to diAerent samples and tempera-
tures: circles, Sb at T=40 mK and L~=1.05 pm; inverted tri-
angles, Sb at T=300 mK and L~=0.60 pm; squares, Au at
T =40 mK and L~=2.0 pm. Inset: A photograph of the Sb
sample. (b) Conductance fluctuations in units of e /h on a log-
arithmic scale for the data displayed in (a). Dotted lines are
weak-localization predictions for two difterent boundary condi-
tions.

2344



VOLUME 58, NUMBER 22 PHYSICAL REVIEW LETTERS 1 JUNE 1987

patterned in a modified high-resolution scanning
transmission electron microscope. ' The fluctuations are
measured at low temperatures by sweeping of the mag-
netic field over a ~ 3 T range. In order to compare
diferent voltage fluctuations we must correct for any
variations in linewidth. On the assumption that the line
has a uniform thickness, the voltage fluctuations h, V& can
be written as AV&=IRo(e /h)L&/w, where R~ is the
resistance per square of the metallic film and w is the
width of the line.

Figure 2(a) displays the symmetric and antisymmetric
parts of the normalized voltage Auctuations AV/8 V& as
functions of (L/L&) 'i for all our samples. The values of
L& are estimated by a fit to the weak-localization behav-
ior for the higher-temperature data on the Sb line. For
the other temperatures and samples, L& is adjusted to ob-
tain the same fluctuations at L=L&. All measurements
at difterent lengths on the same sample at constant tem-
perature are represented by the same symbol. The data
clearly show that for all values of the sample length L
the antisyrnrnetric part of the voltage fluctuations is con-
stant but the symmetric part of the voltage fluctuations
is independent of length only for L (L&. Both these ob-
servations are consistent with our predictions. For
L & L&, the symmetric part of the voltage fluctuations in-
creases and approaches the previously determined re-
sult' for the total fluctuation hvs =hva:(L/L&) '~ .
Each sample exhibits the same qualitative effect, in-
dependent of temperature and exact choice of L&. As
L 0 the symmetric part of the fluctuations is constant
and is the same order of magnitude as the antisymmetric
part. Figure 2(b) displays the data of Fig. 2(a) as con-
ductance fluctuations. The measured conductance fluc-
tuations in a four-wire measurement can be much larger
than e /h. The difference, however, between (LPL) i

(solid line) and (LPL ) (dashed line) dependence is
di%cult to distinguish in this plot and was one of the
problems in earlier work. '

The point corresponding to L —0 in Fig. 2(a) was
measured by our injecting current into leads 3 and 6 (see
Fig. 1) and measuring the voltage between leads 1 and 2.
The distance Li was 0.2 pm and, as expected classically,
the average resistance was approximately zero. Howev-
er, the measured rms voltage fluctuation h, V36 i2 was the
same value as Av|623 resulting in a "AG" =2x10 e /h.
The nonlocal nature of this voltage measurement is addi-
tional proof that the fluctuations in voltage are constant,
independent of the position of the voltage probes for
L «L~. It also demonstrates the quantum nature of the
transport we are measuring. Because of the wavelike
properties of the electrons, the eflective extent of sample
is defined not by L but rather by L&. A similar result has
been predicted for the case of weak localization in

wires. It has been demonstrated that when L& be-
comes comparable to or greater than the distance be-
tween contact points along the sample the quantum

(Li+L2) ' L' —L '—
2L iL2

(4)

If the two adjoining segments have equal lengths
(L|=L2), the correlation function takes a particularly
simple form, C =

2 x2 —1. For the case a =1, we find

a complete correlation between measured voltages, C=1.
For a = —,', there is no correlation between voltages,
C=O. For a=0, the correlation is C= —

2 . A similar
computation can be performed for the case of separate
segments (L 1 and L3) with the same results for the
correlation in the cases a =1 and a =

2 . For the case of
a =0 with separate segments, there is no correlation be-
tween measured voltages (C =0). Figure 3 displays
three voltage correlation functions, for the case of adja-
cent segments measured over the magnetic field range of
~ 3 T. This figure shows the transition from a region
without correlation (L ) L&, a= —,

' ) to a region with
negative correlation (L (L~, a =0). The correlation

corrections to the measured conductance become larger.
However, the exact functional form of the corrections
depends crucially upon the exact choice of the boundary
conditions on the diffusion propagator. For the case of
open boundary conditions at the ends of the wire (ap-
propriate for wire arrays), the corrections to the conduc-
tivity have the limiting form AGa:(L&/L) (hv indepen-
dent of L). Recently, Doucot and Rammal's theory has
been modified to include the boundary conditions ap-
propriate for a four-terminal geometry. Both correc-
tions are shown in Fig. 2(b) as dotted lines. The magni-
tudes of these weak localization corrections differ by
more than an order of magnitude in places from the
data. This weak localization approach is not expected to
describe the physics of our samples because in our sys-
tem there is no self-averaging. However, a new ap-
proach has recently been used that includes both diago-
nal and oA'-diagonal contributions from the diA'usion

propagator and should be appropriate to the conductance
fluctuations we measure. In all cases it is clear that
when L& & L, L& sets the relevant length scale. The prop-
agation of the electrons into the leads will result in addi-
tional contributions to the measured voltage fluctuations.

An interesting consequence of the power-law depen-
dence of the rms voltage fluctuations, d V(L) ~L', is that
the correlation function of voltages measured between
diflerent sections of the wire depends on a. Referring to
Fig. 1, we will consider the rms value of the fluctuating
part of the voltage difI'erence measured between two
probes VJ =Vi —V;. From only the additivity of the
voltages along the wire together with the definition of the
rms value ((Vi) =(Vi )+(V; ) —2(V; VJ)), the correlation
C between measured voltages V23 and V34 is
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measured for the smallest ratio, L/L~ =0.25, is C
= —0.48 ~ 0.07 (c = —

—,
' theoretically for a =0). All

correlations measured for separate probes are zero
within experimental error. This gives us an independent
confirmation that a=0 when L & L&. The correlations
are measured without any assumption for L& and the
geometrical dimensions. The —

—,
' value for the voltage

correlation function arises only in the case a=0 when
the two voltage measurements share a common probe,
and does not imply that the potentials are correlated.
The potential fluctuations are completely uncorrelated at
distances larger than some characteristic length g. From
our comparison between segments in series with no com-
mon voltage leads, g (0.2 pm.

In summary, using only the property of voltage addi-
tivity and the Onsager relations, we have shown that the
total voltage fluctuations in small systems (L & L&) are
independent of the position of the voltage probes. This
leads to a (L/L&) divergence of the measured conduc-
tance fluctuations. The antisymmetric component of the
fluctuations has the same behavior for all L&. Both re-
sults are confirmed by the experiments presented here.
In addition, the observation of both nonlocal voltage fluc-
tuations and a L/L& dependence of the correlation func-
tion provide independent confirmation of the length in-

dependent nature of voltage fluctuations when L&
&I) g.

We acknowledge many helpful discussions with M.
Buttiker, H. Fukuyama, Y. Imry, P. A. Lee, S. Mae-

FIG. 3. Three magnetic field correlation functions between
voltages measured along adjacent segments for three diAerent
ratios of L/L~ computed from

f V~(x) V2(x+0)dx
[f vj(x')dx' f vj(x)dx]'i'
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