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Exact Determination of the Percolation Hull Exponent in Two Dimensions
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By mapping the two-dimensional percolation problem on a Coulomb gas, we obtain the exact fractal
dimension of the external perimeter (or "hull" ) of the infinite percolation cluster: DH = —, , in agreement

with numerical estimates and a recent conjecture. We also determine an infinite set of exact exponents
associated with various topologies of this hull. We argue finally that the diAerent fractal dimensions ob-
served recently by Grossman and Aharony, who modified the definition of the hull, are all equal to

4D = —.
3

PACS numbers: 64.60.Ak, 05.20.—y, 75.10.Hk, 75.40.Cx

The percolation model, which is defined by occupation
in a random way of a fraction p of bonds (or sites) of a
regular lattice, has been a subject of constant interest. '

An infinite cluster appears above the threshold p„corre-
sponding to a second-order phase transition. In two di-
mensions, some basic features of this transition are now
known exactly; the exponent v which describes the
divergence of the correlation length g —~p

—p, ~

' is
v 3 while the exponent y giving the mean cluster size
(s) —

~ p —p, ~

" is y= —'„' . Many questions, however,
remain open; in particular, a lot of work has been devot-
ed to the study of "hulls" or external cluster perimeters.
Numerical studies ' have given for the fractal dimen-
sion of the hull of the infinite cluster at p, similar values,
that can be represented as D~=1.75+ 0.02. The con-
jecture that DH is related to the exponent v by

DH = I + I/v = —,
'

Starting with the Hamiltonian pH = —p+1, 16 where
o; =1, . . . , q (integer) and (i,j ) denotes nearest neigh-
bors, one can write the high-temperature expansion of
the partition function, '

(2)

W(Q) being the weight of a graph 0 made of a total
number B of bonds, and C connected components, i.e.,
clusters, including isolated points (Fig. I). This expres-
sion now defines a model for any real q; if q 1 one re-
covers bond percolation with occupancy probability
p =1 —e ~. For q E [0,4], there is a second-order phase
transition, ' which can be studied with use of a Cou-
lomb-gas mapping. ' First, a graph 5' on the original
lattice L in the Potts model can be associated with a pol-

has been recently proposed by Sapoval, Rosso, and
Gouyet. ' Theoretical arguments for ( I ) have been
given by Bunde and Gouyet, ' but they rely on assump-
tions concerning the equivalence of hulls to diAusion
fronts. Quite recently, ZiA', 's accepting (I ), derived
from it other scaling exponents for perimeters and made
numerical tests of them. Here we establish (I) by two
independent methods. We use the formulation of per-
colation as a q= 1 Potts model, ' and by a Coulomb-
gas-mapping technique we derive a series of exact
critical exponents corresponding to DH and to other
geometrical properties of the perimeters. We also show
that these exponents can be extracted from the
Coulomb-gas mapping of the O(n) model, for n = I, and
in the low-temperature phase. Equation (I) now ac-
quires the same degree of reliability as the values of v
and y given above.

Consider first the bond problem on the square lattice.
We define the hull of a cluster I as the set of empty
bonds that touch I and can be linked to infinity by a
path (not restricted to the lattice) without crossing I .

Bond percolation can be obtained' by analytic con-
tinuation of the q-state Potts model to the value q=l.

FIG. l. A typical graph 5' in the high-temperature expan-
sion (2) with 8=15 bonds, C=17 clusters, S=30 sites, and
L =2 internal loops. 5' is in one-to-one correspondence with a
polygon decomposition (here P =19) of the surrounding lat-
tice. After an arbitrary orientation the polygons become walls
between regions of constant height in a SOS model. Height
variables 0 are located on the sites of X and its dual 2). Some
values (in n/2 units) are indicated on the figure in accordance
with the polygon orientations. X, Y belonging to the same po-
lygon P, this graph contributes also to G~ (X—Y).
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In this form one can now formulate Zq as the partition
function of a solid-on-solid (SOS) model. First we
orient arbitrarily each polygon (these orientations will be
summed over at the end). The polygons can then be con-
sidered as walls between regions of constant heights, the
height variables 0 being located on the sites of L and of
its dual 23 (Fig. 1). By convention, the associated 0
difl'erence is taken to be z/2, the highest 0 being on the
left of each arrow. The Boltzmann weight 8'of a given
SOS configuration C is obtained as a product of phase
factors e'" (e '") associated with each left (right) corner
of a wall, and a factor (e~ —1)q ' for each bond of the
original lattice L which belongs to a region of constant
height. Since the difference between the total number of
left and right turns for a polygon on the square lattice is
+ 4 and since the orientations in the SOS model are

summed over independently, resulting in a factor 2cos4u
for each polygon, one has ' Zq =

q Z~~s provided that
q'i =2cos4u. The critical point p, of (2) or (3) is ob-
tained by duality ': (expp, —1)q

'i = 1. At p„ the
SOS model renormalizes onto the vacuum phase of the
Coulomb gas with a coupling constant g given by

q =2+2cos(zcg/2), g E [2,4], (4)

with 8u/x=
~

2 —g/2
~

mod4. The main exponents of
the Potts model can then be derived exactly, ' and for
percolation one finds v= —', , y= —'„' . (These results, as
well as those presented hereafter, can be considered as
exact, provided that there is no "intermediate fixed
point" in the renormalization flow diagram. )

To determine the exact hull exponents, we now intro-
duce a Potts correlation function

G ( (A —V) = g W(Q ) ),
1

(5)

ygon decomposition' of the surrounding lattice 4, here
another square lattice, the sites of which are the mid-
points of the edges of X (Fig. I). The rule is that some
vertices of 1 are cut open to let the bonds of L go
through unintersected. This also applies to the edges of
the dual lattice 2) of L. For a lattice L with a total
number of sites 5, one has (Euler's relation) L
=B+C—S, where L is the number of loops within the
clusters of the graph 0. On 4, the total number of pol-
ygons one can draw around each cluster of 0 and in each
loop reads P =L+C. Hence Zq(2) can be rewritten as

(3)

closed path around X (Y) the height varies by z ( —z).
These vortices correspond, in the Coulomb-gas pic-
ture, to magnetic charges m~= —my= —,

'
. The Boltz-

mann weight W(C I) in the SOS model does not, howev-
er, exactly correspond to (5). X, V being fixed, there is a
new curvature factor' e '" (e '") for each left (right)
turn of the polygon around one extremity. This can be
compensated by the multiplication of W(CI) by a spin-
wave factor exp[i(ex0x+ey0v)] where ex, ey are two
electric charges given by ex =e v = —8u/n:

x ( gmxm y/2 exe y/2g,

or

x ) =g/8 —(4 —g) '/8g. (8)

This is valid for any value of q in the Potts model. For
percolation, q= 1, and by (4) g= —', . Thus we find the
key result x~ = —,'. For p close to p, (equal to —,

' on the
square lattice), G~ has the scaling form

G, (X-Y)=)X-Y( '-F

Integration over V gives then the mean length of a po-
lygon P (Fig. 1) which diverges as

(l(P)) —
i p —p, i (10)

where y~ =(2 —2x~)v=2. Equation (10) describes also
the divergence of the mean number of bonds in a hull.
This agrees with numerical calculations of Ref. 8 and
gives y~ =2.0~0. 1 (y~ is also denoted by y and' y').
Using standard scaling relations generalized to perime-
ters, ' one gets the exponent p~ with which the probabili-
ty P] that a point belongs to the hull of the infinite clus-
ter grows for p ~ p„

Pi-(p —p, ) ',

where p~ =v —
—,
'

y~ =vx~ = —,'. Finally y~ can be relat-
ed9'5 to the fractal dimension DH by y~ =2v(DH —1);
thus

(~ V) g W(P') x s+ Y )'

Zq pg
1

G] appears thus as the correlation function of two com-
binations of a vortex and a spin wave with magnetic and
(dominant) electric charges ( —,', —,

'
g —2) and ( —

—,', —,
'

g—2). It decays at criticality as
~

A —Y
~

"with

DH =2 —x) = 4. (12)
the sum being taken over all graphs 5'~ where L, V are
two points on the surrounding lattice at the corners of
the same polygon P (Fig. 1). For calculating (5) we
modify the orientation of one line of P so that both lines
of P go only from L to Y. In a SOS language, the re-
sulting configuration C ~ then describes a dislocation
with a vortex at A and an antivortex at V: Along a

We can now generalize ' this result. We introduce
correlation functions

Gg(X —V) = g W(01, ),
1 (13)

where the S~ are graphs formed by k polygons which
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on the dual hexagonal lattice P separate occupied from
empty sites. The hull configuration so obtained (Fig. 3)
is clearly in one-to-one correspondence to a gas of loops
on P. This is just the O(n) model introduced by
Nienhuis with a partition function

(a Z„=yp'n', (i7)

(b)

FIG. 2. (a) A cluster made of k (=2) connected occupied
bands, pinched together at X and Y. (b) A point X of the
infinite-cluster perimeter, where k (=2) large occupied bands

(hatched peninsulas) of the infinite cluster come close together.

join a fixed neighborhood of X to a fixed neighborhood of
Y. Modifying the orientation of part of these polygons in

such a way that one can circulate only from X to Y, one
gets in the SOS model a dislocation with a vortex of
magnetic charge mx=k/2 at X and my= k/2 at Y.
The weights in (13) impose in the SOS model the same
additional phase factor exp[( —8u/tr)i (Ox+ Oy)]. Gk

decays thus at criticality like
~
X—Y

~

" with [see Eq.
(7)]

xk = —,
' g( —,

' k)' —(4 —g)'/8g.

For percolation (g = —', ) we have

xk = (4k —1)/12.

(i4)

(15)

Integrating with respect to Y gives the singular part of
the mean number of clusters, the external perimeter of
which has the special topology of k bands pinched at
their extremities [Fig. 2(a)], (nk) —

~ p —p, ~

" with

yk =(2 —2xk) v. One can also consider the probability
Pq that a point belongs to a region of the perimeter of
the infinite cluster, where the latter has the special topol-
ogy of k bands ("peninsulas") coming close together
[Fig. 2(b)]. It grows as Pk —(p —p, ) ", where Pk
= v —

—,
'

yj,
= vxk. For k = 2, it is interesting to note that

two touching peninsulas are equivalent to a cut ting
bond. We find x2= 4,. hence we obtain a fractal di-
mension D„d =2 —p2/v= —,

' =1/v, thus giving another
determination of a well-known result.

It is worth noting that the basic exponents in (15) and
(16) can also be derived from the O(n) model. Consider
site percolation on a triangular lattice (Fig. 3). Polygons

The physical interpretation of the exponents is as fol-
lows. Like in Eq. (9), Gk reads for p near p,

G&(X—Y) =
~

X—Y
~

""F, ~ ~ (16)
I p —p, I

the sum being taken over graphs formed by P noninter-
secting self-avoiding loops of total length B on P. At
the threshold p, = 2, all polygons for percolation have
the same weight, I, which corresponds to Eq. (17) for
n=i, P= 1. The critical point of the O(n) model on P
is exactly known, and for n =1, p, = I/J3. We are thus
in the low-temperature phase, which is known to be also
critical, renormalizing onto the Coulomb gas with cou-
pling such that n= —2costrg' and g'E [0, 1]. Hence
for n = 1, g

' = —,
' . Then the correlation functions

Gk(X —Y) [Eq. (13)] correspond now in the O(n) model
to correlation functions of products of 2k spins at X and
Y. The critical exponents x2p with which these functions
decay are known '

by mapping of the O(n) model onto
a Coulomb gas and read

x~k = —,
' g'k' —(1/2g')(g' —1)'.

For g'= —,', Eq. (18) coincides with (15) x2k =—xt„as ex-
pected. More generally, we state that the q-state Potts
model at its critical point (for 0 ~ q ~ 4) can be related
to an O(n) model in its low-temperature phase with
n =q 't' (0:n 2).

Let us comment finally on the generality of our re-
sults. We expect DH = —,

' to be universal provided one
defines the hull of a cluster I in a "natural" way. For
bond percolation, the mapping of the Potts model ex-
plained above is the same for all lattices and the hull
has always the same definition. The situation is more
complicated for srte percolation. Recently Grossmann
and Aharony have numerically observed that when
defining the hull on the square lattice as the set of empty
sites which touch I and are related to infinity by a path
of nearest or next nearest neighbor connections avoiding

FIG. 3. Site percolation on the triangular lattice. Full cir-
cles represent occupied sites. The hull perimeter (bold lines) is

drawn on the dual hexagonal lattice.
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I, one gets DH = 4, while the restriction to nearest
neighbor connections gives a diAerent result, D, =1.37
~ 0.03. Similarly, Meakin and Family have found
D, =1.343+ 0.002. Now, Coniglio et aI, have indicat-
ed that the percolation hull (defined in a natural way as
in this Letter; in particular see our Fig. 3) with DH = —,

'
is identical to a self-avoiding walk (SAW) at the 6
point, which gives ve= 1/DH = —', , in good agreement
with numerical estimates. This 6 point is an unstable
tricritical point. Hence, any macroscopic restriction
on the hull configurations like in Refs. 23 and 24, being
equivalent to further repulsive interactions between
bonds on the hull SAW, automatically drive the latter to
its excluded-volume fixed point. The fractal dimension is
then well known, D = vsA'w= —', . We thus suggest that
D„and also the whole hierarchy of dimensions intro-
duced in Ref. 23, are all equal to —', , in excellent agree-
ment with the numerical results. We hope also to ex-
tend the analogy of Ref. 25 for determining from the
hull exponents given here the polymer exponents at the 6
point.
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