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Total-energy calculations based on self-consistent effective-medium theory are used to investigate
icosahedral phase stability in aluminum-transition-metal binary alloys. We identify the mechanism of
cohesion and explicate trends observed in diffraction experiments.
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The existence of long-range icosahedral order in cer-
tain metallic alloys is now an established experimental
fact." The crystallographic? and metallurgical® data
base is particularly large for Al-Mn, the subject of the
original investigation.* Unfortunately, the available evi-
dence? does not clearly distinguish between the two most
popular structural models of this metastable phase—an
icosahedral quasicrystal® or an icosahedral glass.” On
the other hand, both models assign® an important role to
the Mackay icosahedron,® a S54-atom structural unit
which appears twice in the unit cell of crystalline a-(Al-
Mn-Si). Atomic models for other icosahedral alloys'®
similarly incorporate structural elements from nearby
stochiometric crystalline phases. It is noteworthy that
the physics of metals plays no role in these analyses. No
evidence is offered that the presumed *“building blocks”
possess any particular stability. The present Letter is in-
tended to open'! discussion of this subject by means of
first-principles total-energy calculations of the cohesive
properties of various crystalline phases of aluminum-
transition metal alloys. Our results directly bear on the
observed trends'? of icosahedral phase formation in these
materials.

The correct ground-state crystal structure of elemental
solids regularly emerge from total-energy calculations in
the local-density approximation (LDA) to density-func-
tional theory.!* Regrettably, practical considerations
render such computations unfeasible for even moderately
complex ordered alloy phases. Approximate methods
based on tight-binding theory have been proposed,'* but
at the cost of the introduction of adjustable parameters.
A rather different scheme'? is based on the idea'® that a
metal can be viewed as a collection of atoms—each em-
bedded in an effective medium which reflects its immedi-
ate surroundings. The total energy of a collection of
atoms located at positions r; is written

Elo!=zbri(ni)+zz@(lf,’_‘l’jl)4 (1)

Here o(R;;) is a pair potential and U;(n;) is an embed-
ding function (different for each element) which depends
on the local “background” electron density contributed
to site r; by the wave-function tails of atoms at sites
r;=r;. Energy calculations based on Eq. (1) have been
notably successful in the prediction of structural proper-
ties such as lattice relaxation'” and reconstruction'® at
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metal and alloy surfaces. In all these calculations, the
functions U(n) and ¢(R) are determined empirically by
fitting to known quantities such as bulk lattice constants,
elastic moduli, vacancy formation energies, etc.

Very recently, Jacobsen, Nérskov, and Puska,'® and
Manninen?® have derived Eq. (1) as a formal approxi-
mation to the exact expression given by density-
functional theory. For practical application to our prob-
lem, we generalize the approach of the authors of Ref.
19 to the case of an alloy to yield a total-energy expres-
sion which contains neither adjustable parameters nor
any functions to be fitted to experimental data. A key
point is that, at the stoichiometries where icosahedral
phases generally form, transition-metal atoms are the
minority species and are never nearest neighbors.
Hence, unlike pure transition metals,?' cohesion is not
dominated by large d-orbital overlap and the many-body
embedding function U(n) is well represented by the en-
ergy of an atom immersed in a homogeneous electron gas
of density n. This quantity may be calculated exactly
within the local-density approximation.?? The pair po-
tential is identified'® with the first-order perturbation-
theory correction to the homogeneous-electron-gas con-
tribution to E. '® We write it in the form ¢(R;;)
= q;(12n;;)n;;, where n;;(R;;) is the electron density con-
tributed to cell i by an atom at site r; and a;(n) is the
cell-averaged electrostatic potential produced by the to-
tal charge density of an atom of type i/ immersed in a
homogeneous electron gas of density n. 23

Although our quantitative calculations reported below
use Eq. (1), an approximate analysis of this equation is
sufficient to expose the qualitative cohesive principles at
work in the aluminum-transition-metal alloys of in-
terest. Suppose that, for each atom i, the electron densi-
ties n;; contributed by the (twelve) nearest neighbors are
all equal. In that case, Eq. (1) reduces to

Elol=2[Uf(ni)—a,-(n,-)n,-]=ZE,-(n,-). (2)

Figure 1 is a plot of the function E;(n) for aluminum
and the 3d transition metals.?* Obviously, aluminum
and manganese atoms have vastly different background
density requirements. A compromise is required to mini-
mize the energy. In particular, an icosahedral arrange-
ment of twelve aluminum atoms surrounding a man-
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FIG. 1. Plots of the function E;(n) [Eq. (2)] for aluminum
(dashed curve) and the 3d transition metals (solid curves).
The unit of density is ag ® (from Ref. 19).

ganese atom simultaneously maximizes the density con-
tributed by each Al atom to the Mn atom and minimizes
the density contributed by each Al atom to the other Al
atoms. This follows from the geometry of an icosahed-
ron: The distance between aluminum atoms is greater
than the distance between any aluminum atom and the
central manganese atom. Now arrange twelve such
icosahedra so that the twelve manganese atoms them-
selves form an icosahedron. The resulting structure is
precisely a Mackay icosahedron encased in a shell of
aluminum atoms. It is noteworthy that there is a hole at
the center of this structure. The presence of either a Mn
or Al atom in the vacancy would contribute excess
charge to the immediately adjacent aluminum atoms and
destabilize the entire structure. Figure 1 also shows that
the icosahedral compromise is unnecessary for, say, an
Al-Sc alloy where the minima of the E;(n) curves nearly
coincide. A substitutional fcc structure satisfies both
constituents in that case.

The argument given above [based on Eq. (2)] presum-
ably holds rigorously for neither the a-(Al-Mn-Si) struc-
ture?’ nor for the MnAlg or MnAl, structures which ap-
pear in the equilibrium Al-Mn phase diagram.?® There-
fore, we have used the complete energy expression, Eq.
(1), to corroborate our intuition. The calculations are
self-consistent in the sense that the charge which flows
out of a cell into adjacent cells is consistent with the
charge which flows into the cell to form the background
electron density. Details will be presented elsewhere.
For pure aluminum, Eq. (1) is minimized at a lattice
constant within 1% of the observed value.!® Similarly,
we find that the minimum energies of substitutional fcc
Mn-Al alloys occur at lattice constants in quantitative
agreement with experiment.?

Table I lists the calculated cohesive energies of crys-
talline a-(Al-Mn), MnAlg, and four substitutional fcc

TABLE I. Total energy of Al-Mn and Al-Sc alloys at vari-
ous stoichiometries as calculated from Eq. (1). The
stoichiometry is given as the atomic percent of the transition
metal component.

Mn or Sc content Total energy

Structure (at. %) (eV/atom)
fcc Al-Mn 12.0 —3.03
MnAlg 14.3 —3.00
fcc Al-Mn 14.3 —2.98
a-(Al-Mn) 17.4 —2.95
fcc Al-Mn 17.4 —2.92
fcc Al-Mn 19.0 —2.89
fcc Al-Sc 15.0 —3.28
a-(Al-Sc) 17.4 —3.18
fcc Al-Sc 17.4 —3.28
fce Al-Sc 19.0 —3.27

Al-Mn alloys in order of increasing manganese content.
The choice of these test structures is motivated by the
observed phase diagrams of Al with the transition metals
which principally exhibit close-packed and locally
icosahedral crystal structures. By using the fcc results to
gauge the purely stoichiometric contribution, we find
that both MnAlg (28 atoms/unit-cell) and a-(Al-Mn)
(138 atoms/unit-cell) are stabilized by about 0.02
eV/atom relative to the competing substitutional struc-
tures.?” Unfortunately, the detailed crystal structure of
MnAly is unknown. We presume that its energy is rela-
tively lower than a-(Al-Mn) so that the latter is exclud-
ed in favor of the observed phase separation of MnAlg
and MnAl, at intermediate stoichiometries.?® Table I
also shows a comparison between hypothetical a-(Al-Sc)
and nearby substitutional phases. As the simple argu-
ment given above suggests, the complex alloy phase with
local icosahedral units is much higher in energy than the
competing fcc structures.

We now turn to the implications of our results for
metastable icosahedral-phase formation. These phases
are formed either by rapid cooling from the melt>* or by
solid-state interdiffusion.?® Since the latter process can
occur at twice room temperature, we need to identify lo-
cally stable configurations of the alloy with energies
much less than 0.05 eV above the ground state but with
large entropies, i.e., with high probability of formation.
Structures which consist of arrangements of Mackay
icosahedra (MI) are natural candidates. Each MI (sur-
rounded by aluminum) is a low-energy configuration.
The exact placement of aluminum atoms at the connec-
tion points contributes a “wall” energy. Our results for
a-(Al-Mn) show that there is at least one way to arrange
MI so that the total (MI+wall) energy is quite low.
However, numerous (noncrystallographic) packing
configurations are possible as a result of the many identi-
cal faces of a MI and its nearly spherical shape. If, in
addition, MI are put together so as to locally mimic a-
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(A1-Mn) "% it is very plausible that the wall energies are
similarly small. While lower-energy crystallographic
structures exist (e.g., MnAlg and MnAly), they presum-
ably possess no local structure units (different from MI)
which can be rearranged easily without an intolerable
cost from the wall energy. Such structures are dis-
favored at elevated temperature by entropy considera-
tions. With these arguments in mind, it is easy to see
from Fig. 1 why aluminum only forms icosahedral binary
alloys with transition metals to the right of titanium in
the periodic table.?

The ideas introduced in this paper lend microscopic
support to the suggestion by Villars, Phillips, and Chen?’
(based on a phenomenological analysis) that icosahedral
phases are simply a rather exotic sort of alloy structure.
The basic physics of cohesion is identical to that of other
complex alloy phases. This holds out the promise that a
more sophisticated version of the effective-medium
theory used here can be successful in (at least) rational-
izing the myriad of complex alloy phases observed in na-
ture.?> For example, we have noted that the a-(Al-Mn-
Si) structure contains large holes. This means that the
Wigner-Seitz cells associated with neighboring atoms are
far from spherical. We have used only the crudest
volume correction to account for this effect. Since many
large-unit-cell alloy phases exhibit rather “open” struc-
tures, a better theory should explicitly calculate the
relevant cell volumes. Work in this direction is in pro-
gress.

We thank J. Nerskov for a copy of Ref. 19 prior to
publication and M. Manninen and M. Puska for a copy
of their atom-in-jellium computer program and essential
guidance in its use.
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