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Phase Transition in a System of Hard Disks by Monte Carlo Simulation
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The discrepancy shown by the methods of Monte Carlo and molecular dynamics in hard-disk systems
concerning the solid-liquid coexistence region is analyzed. Using a system containing 224 disks we were
able to obtain the van der Waals-type loop curve which has so far only been obtained by the molecular-
dynamics procedure for 870 hard disks. This result is due to an improvement in the choice of the most
representative configurations in the Monte Carlo procedure.
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Recently, improved simulations of Monte Carlo (MC)
and molecular dynamics (MD) simulations have provid-
ed data with accuracy of 1 part in 10 for the equation
of state of the classical hard-disk fluid system, ' when
r =po/p ranges from r = 1.4 to 30, where p is the number
density and po refers to the closest-packing configuration.
However, when ~ is reduced the same accuracy is not
easily achievable and, in fact, for ~=1 ~ 32 it has been
shown that a system of 870 hard disks undergoes a
freezing transition. The fluid-solid transition was located
by the observation of a van der Walls —type loop at
1.26 ( i(1.32, by means of the MD procedure. Further
extensive MC calculations were carried out ' and the
van der Waals loop could not be reproduced, presumably
because of the lack of completeness of the averaging over
all admissible configurations at any one density on the
loop. In this Letter this disagreement is reconsidered
and we show in what way it is possible to reproduce the
van der Waals-type loop for 224 hard-disk systems, re-
covering a few characteristic results of the successful
MD simulation for the 870-hard-disk system.

The basic idea of the improvement presented here is to
make use, in a peculiar way, of the important sampling
technique introduced by Metropolis et al. , but (ironi-
cally) never fully used in their simulation of the hard-
disk system.

In order to reach adequate chain length, keeping in

mind an economical use of computer time, we take ad-
vantage of the very short-ranged potential, and instead
of examining all N —

1 interactions of the displaced disk
with the other disks, we consider only some much small-
er class of neighbors. However, the gist of our method
(still) is to seek, among all configuration of a canonical
ensemble, the most representative configurations. Al-
though it is clear that certain classes of configurations
are more important than others, on the strength of
having more elements, the game of chance on
exp( —AE/kT) is inefficacious since all configurations
with nonoverlapping hard disks have the same weight
(AE =0 for any move). In fact, it seems that in the in-
terval of confusion, 1.29 ( ~ ( 1.36, the disks are suscep-

tible to being captured by topological traps, and hence
the consequent manifestation of ergodic difticulties.

The method presented here has the same aim as the
method used by Hansen and Verlet in the case of a
Lennard-Jones system, i.e. , to inhibit density fluctuations
by constraining the system to remain fairly homogeneous
in the transition region.

Let us start by considering an arbitrary large system
of volume V, containing N particles. We divide this
volume into a large number r of subunits (identical
cells), with a volume v = V/r, each of which is statistical-
ly large and contains on the average N/r particles. If we
consider a particular cell c„, the equilibrium value (A) of
any intensive quantity 2 of interest may be expressed by

yt, )A(s)exp[ —P(E, —pN, )]
(A), = (1)

gt texp[ —P(E, —pN, )]
where the subscript c in (A), stands for cell ensemble
averaging and the sum runs over the set of all states:
gt, &—=+tv f [dq] (state being defined here by a given
point in the configuration space, spanned by all canonical
coordinates of systems with 0, 1, 2, . . . particles);
p= 1/kT where k is the Boltzmann constant and T is the
absolute temperature, and p is the excess chemical po-
tential measured relatively to po of a perfect gas with the
same particle mass, density, and temperature.

Now let us represent the set of all states of the cell c„
by Ix;], and then form a modified canonical ensemble
through the following Cartesian product of replicas:

IXt. I y = Ix;],S [x&]; S ' ' ' S [x (2)
Thus, a particular point Xg in the modified config-

uration space is given by our choosing a particular state
from each cell and multiplying them. Because of the
macroscopic size of the cells, the cell grand-canonical en-
semble average (A), is identical to the modified canoni-
cal ensemble average (A), , i.e. , (A), =(A), Note that,
in spite of the fluctuation of the number of particles n; in
each cell, we have imposed the conservation law g„=N
with dN (t )/dt =0.

Our MC procedure follows the steps outlined above,
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i.e., we go through the points of {x;j,of each cell, con-
structing a random walk of points {Xkj,, defined by Eq.
(2), using transition probabilities

T;, =T;, ((x;), (x;)„eX,—(x, ), (xi)„cX, )

from one configuration to another, and take the average
(A) over {Xkj, The quantities in brackets indicate tran-
sitions from the state i to j due to a single move of a par-
ticle, for instance, belonging to cell cd (donor cell) which
goes to another cell c, (acceptor cell). ' Therefore, at
most two cells may be involved in the transition X; X~
and the space {Xkj,, is explored by walking through the
phase space {x;j,for all cells.

In order to define quantitatively T;~ for a system of
hard disks we concern ourselves initially with the con-
struction of the transition probabilities II', ((x;),

(xt), ), from one point (x;), in the phase space of
the cell c~ to another one (x~), in the following way:
W, =min[exp( —a), I l where a =P(AE —pni). The
quantity hE is the change in energy of the system, i.e. ,

AE =0 or ~, and n;~ =n~ —n; where n~ is the number of
particles in the state x~. Therefore, the probability to
have simultaneously two specific configurations in the
cells c, and cd, relatively to a configuration (xo), with

(n, +n, , )/2 particles taken as reference, is

P, =W, ((x,),—(x, ), ) W, . ((x,),.—(x, )„).
T;, is therefore defined as min(P~/P;, I), which assumes
the values 0, exp( —Pp), or 1.

We used N =224 initially in a trigonal lattice and di-
vided the initial volume into 56 smaller boxes, each one
containing four disks. The conventional periodic bound-
ary condition was used on the bigger box. In order to
make the transitions from one cell to others with a
higher number of disks even more difficult, an extra bias
was used, i.e. , we convert p into phn in the exponential
above. An is the diN'erence between the number of disks
in the acceptor and donor cells after and before the
move, respectively. Thereby our aim was to calculate the
average number n of disks which surround each one, ena-
bling us to write the equation of state: p =P/pkT =(1
+trdon/2), where P is the pressure, and do the disk di-
ameter.

The total number of configurations generated was ini-
tially broken up into some number M of successive se-
quences of m Monte Carlo steps per site (MCSS) each,
and then we calculate

i.e. , p =0 and pe0, giving therefore a meaningful error
estimate. '' The MC estimate for the average (A) then
reduces to

M

4=1
(4)

TABLE I. Values of p =P/pkT for hard disks as a function
of the reduced volume r, for ditferent values of pp. Note that
as the r increases, the value of pp which brings the pressure
near to the Erpenbeck and Luban results decreases, in agree-
ment with the fact that as r- ~, pp 0.

In Table I we list the values of the equation of state
for a few values of r and p, ' together with results from
MCM D calculations. ' We did not investigate the
dependence of p on the system size and number of sub-
units. However, since the pressure in the quid phase
should not be aA ected strongly by these parameters—less than 1% in our case" at ~=1.4—we use the
Erpenbeck-Luban' result in order to foretell p roughly
for each r. For too small p, increasing ergodicity
difficulties are observed, as i decreases from 1.4 toward
the transition region. On the other hand, for too large p
the relaxation to equilibrium is very sluggish. Indeed,
the values of p which bring the pressure near to MCMD
results' are those which make the pressure to reach equi-
librium faster. The dependence of p on the system con-
straints will be the subject of future work.

In Fig. 1, we show the results for the pressure against
r for Pp =0.0 (open squares) and Pp =1.5 (full dots).
The continuous curve drawn for r between 1.25 and
1.40, for the case Pp =0.0 (i.e. , reducing our approach to
the canonical-ensemble MC procedure), shows two
disconnected branches, namely, the high- and low-
pressure branches. The dash-dotted line segments indi-
cate a region (1.28 & r & 1.31) of canonical average that
is very poorly estimated. For Pp =1.5 the continuous
curve drawn through the full dots reproduces a van der
Waals-type loop for a finite system, as first found by
Alder and Wainwright. Our results for the location and
equilibrium pressure at the melting transition, the hor-
izontal line in Fig. 1, cannot be compared to the results
obtained by Alder and Wainwright since the dependence
on the system size and chemical potential have not been
clarified. The open dots (dashed lines) represent two-

tt'k =— Q p(t; ),
i =Pk(a)q

(3)

where t'ai(t;) is the reduced pressure due to the ith-
generated configuration, Pk =m(k —I )+ I, qk =mk and
pk(h)qk meaning "from pk to qk with increment of A

MCSS," i.e. , h. MCSS are discarded between each two
tt(t;) considered. In order to get better statistically in-

dependent configurations, 6 =5 was used for both cases,
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cases (r =1.33 to 1.34) were within 2%. Diff'erent values
for M and the initial discarded length were used depend-
ing on r. For a few cases, as r =1.3325, 1.34, and 1.35
special attention was paid when the total number of
configurations generated reached 50x10 (M =800).

The main consequence of the approach described
above is to restrain the progression of configurations
which result in distributions too far away from uniform
ones. Therefore, the chance of the system's being cap-
tured by topological traps is reduced in a significant way.
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FIG. 1. Reduced presure p against reduced volume r. The
dots represent the reduced pressure for Pp =1.5. The open
ones, adjusted by the dashed line, presented "two-step" relaxa-
tion. Open squares represent the reduced pressure for Pp =0.0.
The dash-dotted line segments indicate a region of canonical
average with a poor estimate. The accuracy is discussed in the
text.

step relaxation with the manifestation of a long-living
metastable state': The pressure reaches equilibrium at
values indicated by the open dots, then a sudden jump
occurs and the pressure relaxes at lower values (corre-
sponding full dots).

The probability distribution p(pi, ) was verified as be-

ing approximately Gaussian with a bigger width for ~

between 1.31 and 1.35. Those cases with ~ & 1.335
presented a longer tail toward higher pressure and the
opposite (longer tail toward lower pressure) was ob-
served for ~& 1.335. The tails disappear for r & 1.29
and T:& 1.36. The accuracy of the estimates for the
average pressure were typically within 1%, but in a few
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