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T& measurements have been performed on the solid phase of helium-3 adsorbed on Grafoil. A theory
has been developed to interpret these data on the basis of the hypothesis of a single correlation time for
the exchange-induced spin motion. We infer that the relaxation is mediated by the internuclear dipolar
interaction. We show how the Tl-minima data together with exact moment and hydrodynamic calcula-
tions may be used to approximate the spectral functions over their whole range. Thus we obtain numeri-
cal values for the exchange frequency for all regions of data. Our method is quite general and applicable
to other systems.

PACS numbers: 67.80.Jd, 67.70.+n

Exchange is one of those phenomena which are funda-
mentally quantum mechanical in origin. And one of the
most striking manifestations of exchange is in helium-3
where in the solid phase there can be rapid atomic
motion resulting in a diAusion coefficient more typical of
a viscous fluid. In bulk solid helium-3 the dynamics of
exchange have been studied by various techniques, prin-

cipally that of nuclear magnetic resonance.
Experiments on two-dimensional helium, submono-

layer films of helium adsorbed on a substrate, have
demonstrated an impressive phase diagram with solid,
fluid, and mixed phases together with an assortment of
transitions between them. Characteristically, two-
dimensional solid helium-3 exhibits exchange.

We have performed an extensive series of NMR ex-
periments on submonolayer films of helium-3 adsorbed
on a substrate of exfoliated graphite known as Grafoil.
Previous measurements have been performed by
Richards mainly at a Larmor frequency of 1 MHz and

by Satoh and Sugawara at 10 MHz. In general these
experiments and ours have tended to support the above-
mentioned phase identifications. In this Letter we report
on a study of exchange investigated through spin-lattice
relaxation. Our measurements were performed over a
range of frequencies between 1 and 10 MHz and at a
temperature of 1.2 K, where the relaxation time was in-

dependent of temperature. Fractions x of a full mono-

layer between 0.7 and 1 were investigated. In these ex-
periments the normal to the adsorption surface was per-
pendicular to the static magnetic field. Full experimen-
tal details will be published in a forthcoming paper.

The interpretation of spin-lattice relaxation measure-
ments on adsorbed systems has in the past been some-
what problematic. In a T~ experiment, at the most ele-
mentary level, one wants simply to estimate the charac-
teristic time for the motion of the spins. In bulk systems
interpretation is relatively straightforward, being based
upon reasonable beliefs about the origin of the fluctuat-
ing magnetic fields causing the relaxation, together with

assumptions about the form of the power spectrum of
these fluctuations.

In adsorbed systems there are extra sources of mag-
netic fields from the substrate. Most surfaces will have
some magnetic impurities. Furthermore, in exfoliated
graphite there are demagnetizing fields arising from the
substrate's anisotropic diamagnetism. Two-dimensional
systems have the further property that the conventional
assumptions about the spectral density functions as made
for bulk systems are often invalid.

Notwithstanding these difficulties, however, there is
one feature of spin-lattice relaxation measurements
which has an unequivocal interpretation. That is the T~
minimum. Observation of a minimum in T

~
as the

motion varies monotonically indicates two things: First,
that the characteristic time of the motion is of the order
of the Larmor precession period, and second, that the
value of T~ at the minimum is of the order of the Lar-
mor frequency divided by the mean square value of the
local relaxing fields. Thus from a set of T~ minima not
only can one map out the speed of the motion, but also
the mechanism for the relaxation may be inferred.

At the qualitative level and ~here T~ minima occur
this is extremely helpful. But for a more detailed and
quantitative characterization of the atomic behavior, and
away from Tj minima, knowledge of the shape of the
spectral density function is required.

We shall show in this communication how we have
managed to overcome these problems so that the form of
the exchange-modulated spectral density may be approx-
imated and the frequency of exchange motion estab-
lished over a wider range of solid densities then was
heretofore possible.

The spin-lattice relaxation rate is given by the spectral
density J(co) of local-field fluctuations at the Larmor
frequency. For dipole-induced relaxation, the case of in-
terest to us, there is, of course, also a double-frequency
term. For the purposes of this discussion we shall ignore
this term or, equivalently, regard it as subsumed into the
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definition of J(co).
The spectral density may be expressed as the Fourier

transform of the autocorrelation function of the local-
field fluctuations, G(t). The expression for G(t) is given
by an equation of the form

G(t) =TrIHd(t)Hd(0)I,
where Hd is the internuclear dipolar Hamiltonian and
the time evolution is generated by an exchange Hamil-
tonian. For Heisenberg nearest-neighbor pair exchange
or for the more recently proposed three-particle ex-
change, the Harniltonian' is linear in a parameter J, the
exchange frequency, which reflects the rapidity of the
motion. The important point is that there is a charac-
teristic time or, equivalently, a frequency that "scales"
the motion. Clearly J does just that. It follows that the
autocorrelation function will depend on t and J only
through the product Jt.

We therefore express G(t) as the product of its initial
value G(0) and a shape function S(Jt) The spect. ral
density then has the form

J(cu) = [G(0)/JlIt (co/J), (I)
where K, the reduced spectral function is the Fourier
transform of the shape function S. This implies a gen-
eral expression for T~ which means that both J/T~ and
co/T~ are functions simply of co/J.

It is convenient to consider the phenomenon of the T~
minimum from this point of view. co/T~ will have a max-
imum for some particular value of co/J, say co/J=C.
The magnitude of C depends purely on the shape of the
function K(co/J). We are thus in a position to make two
general conclusions about minima in the spin-lattice re-
laxation time: (1) A minimum in T~ at Larmor frequen-
cy co is seen when J has value

J = co(min)/C.

(2) The value of T~ at the minimum is given by

co(mi )nT/, =G(0)CZ(C).

And since CK(C) is a constant it follows that T~ is pro-
portional to the Larmor frequency at the minimum.

The factor G(0) is essentially the second moment of
the cw resonance line. So while observation of a T~
minimum gives the order of magnitude for the motion
frequency J, from a set of minima the local fields can be
estimated; the relaxation mechanism may be established.
This last result is of particular importance in the NMR
of adsorbed systems since, as stated, in such cases there
can be spurious sources of local fields, each providing a
relaxation channel.

In Fig. 1 we have plotted our experimental T
~

minimum values against Larmor frequency and the
linearity is clearly exhibited. T~ is multiplied by x to
eliminate the intrinsic density dependence of G(0).
From the slope of the line we are able to conclude that
the relaxation is indeed mediated by the internuclear di-
polar interaction.

The experimental measurements of T~ as a function of
frequency reflect the form of the spectral density or,
equivalently, the reduced spectral function K(co/J).
From Eq. (1) it follows that a plot of J/T~ against co/J
will yield the shape of the function K. However, this is

not possible since J is as yet undetermined. But J is pro-
portional to frequency at the T

~
minima. Thus the shape

of the reduced spectral function will be indicated on a
plot of m(mi )/nT~ against co/co(min). In other words,
when plotted in this way the experimental data should
fall on a single curve. Such a graph is shown in Fig. 2.
This shows data for those coverages where a T~
minimum has been observed at some frequency. It ap-
pears that the points do fall on a common curve. This
supports the hypothesis that for the range of film densi-
ties considered the temporal behavior is determined by a

single characteristic time.
One also observes that unlike in bulk systems, here

there is a continuing increase of the spectral density at
low frequencies, a special feature of few-dimensional sys-
tems.
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It is clear that in the vicinity of the Ti minima NMR
is a powerful spectroscopic probe of microscopic dynam-
ics: The temporal features of the atomic motion may be
mapped out through observation of minima at successive
Larmor frequencies. The analysis is very general, being
independent of the precise features of the spectral densi-
ty function. But correspondingly, the conclusions are
only qualitative in that the constant C remains undeter-
mined. To find an actual value for J at a minimum, the
shape of the spectral density must be known. And if the
shape were known then the atomic motion could be
analyzed —J could be found —in regions away from Ti
minima, where ro/J is too large or too small.

In general it is impossible to calculate exactly the form
of the spectral density function and some sort of approxi-
mation procedure must be used. For a 2D system such a
procedure for G(r) must respect both short- and long-
time behavior. A moment-type calculation gives the
short-time expansion and hydrodynamic arguments
based on the solving of a diffusion equation give a long-
time asymptotic expansion. These short- and long-time
descriptions relate to the high- and low-frequency
descriptions of the spectral density. Approximation of
G(t) or J(ru) over its entire range thus corresponds to
interpolation between the calculated small- and large-
argurnent behavior. But such interpolation is, of course,
not unique. In particular, diferent expressions could,
while reflecting correctly the low- and high-frequency
forms for J(ru), give midrange values that differ some-
what. We have overcome this problem in the following
way.

Our method is to supplement the theoretical informa-
tion calculated at the ends of the range with reliable ex-
perimental information on the value of K at an inter-
mediate point. This is obtained from the Tl-minima ex-
perimental data; from the slope of the graph of T i

against frequency the intermediate value CK(C) is

given. N
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FIG. 4. Exchange frequency as a function of interatomic
distance for helium-3 adsorbed on Grafoil. Lower solid curve
is theoretical calculation of Cowan er al. (Ref. 4). Upper solid
curve is calculation of Roger (Ref. 10). For this upper curve
only the slope should be considered; the absolute value is un-
determined.

We have then a procedure for approximating J(ra)
over the complete range of interest: (1) From the long-
and short-time approximations to G(r), construct an in-

terpolation expression with some remaining variable
parameter(s). (2) Take the Fourier transform of this ex-
pression to give the spectral density function J(ru).
(3) From this J(ca) find the slope of the TI-minimum
versus frequency line [a function of the adjustable
parameter(s)]. (4) Choose the parameter(s) to give the
experimentally observed slope. In this way one is able
confidently to make a good approximation to the spectral
density function over its entire range. And of course the
constant C relating J to the frequency of the minimum
will be determined. The details of these calculations will

be discussed in a future publication. A summary is

presented here.
The full expression for the dipole-mediated spin-lattice

relaxation time was used, including the double-frequency
term. Long- and short-time expansions were calculated
as in Ref. 9 and these were used together with the Ti-
minima data extracted from Fig. 1.

We had then complete expressions for the spectral
densities and thus an expression for TI. The constant C
relating the frequency of the minima to the value of J
was then found to be co(min)/J =2.19+'0.01.

Having established this relation we were able to obtain
an actual value for J from each observed TI minimum.
We were then in a position to replot the data of the
universal curve in Fig. 2 now using the more meaningful
cu/J for the abscissa. This is shown in Fig. 3. The solid
curve shows the behavior predicted by our approximated
spectral densities. Note that there was only one truly ad-
justable factor, obtained from the slope of the data on T~
minima versus frequency. The shape of the curve is
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determined entirely from the short- and long-time calcu-
lations. The fit is most satisfying.

Also on this graph we have plotted the data obtained
away from the minima. In these cases J is initially un-

known. Trial values of J were varied to give the best fit
of the points to the existing curve.

Finally, in Fig. 4 we show the obtained values of J as a
function of interatomic spacing d. At densities corre-
sponding to d less than about 3.45 A there are other con-
tributions to Ti so that the above analysis does not ap-
ply. For interest, in this region we have indicated values
of J obtained from T2 measurements and analyzed ac-
cording to the same spectral density functions.

For comparison the two solid curves indicate theoreti-
cal calculations of J by Cowan et al. for Heisenberg
two-particle exchange and by Roger' for three-particle
exchange.
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