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"Martensitic" Instability of an Icosahedral Quasicrystal
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A density-functional theory is developed to calculate the elastic moduli of crystals and quasicrystals.
It is found that the nonaffine character of deformations below the unit-cell scale causes the Poisson ratio
of a hard-sphere solid to be negative. An elastic instability is found for the icosahedral quasicrystals
which lowers their symmetry to D3 or D5. The distortions of the diffraction pattern are in qualitative
agreement with experiments.
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During the last several years there has been a renewed
interest in theories of solid-liquid transition. The appeal
of the density-functional theory put forward by Rama-
krishnan and Yussouff is in its simplicity, accuracy, and
the fact that it contains no adjustable parameters. The
accuracy is controlled by the truncation of an expansion
around a reference uniform state. The only assumption
enters through a description of this state. This theory is
quite successful in predicting solidification parameters
for hard-sphere (HS) and Lennard-Jones (LJ) fluids.
Such theory was also used to study submonolayer phases
of rare gases on graphite, the glass transition, and most
recently the stability of icosahedral quasicrystals.
Several authors have proposed that a similar approach
can be used for "first-principles" calculations of such
quantities as defect energy, liquid-solid interface, elas-
tic moduli, etc.

In this Letter we develop a density-functional theory
for calculating the elastic moduli of crystals and quasi-
crystals. A novelty of our calculation is that we allow for
the relaxation of the strained crystal density. Although
our main interest is in quasicrystals, we first consider the
elastic moduli of HS, LJ, and (hypothetical) cobalt fcc
crystals. ' We then focus our attention on the elastic
moduli of a hypothetical cobalt icosahedral quasicrys-
tal"

In the case of the HS system we used the Percus-
Yevick liquid structure factor at the freezing point. For
the LJ calculation we make use of the supercooled-liquid
structure factor determined by computer simulations
near the glass transition. ' For the Co calculation we
used the experimentally determined amorphous cobalt
structure factor' which we assume to be similar to the
structure factor of supercooled-liquid Co near its es-
timated glass point. Because of the lack of relevant ex-
perimental and theoretical results, we cannot make an
independent check of calculated crystal moduli. Howev-
er, the results which are available at different points in

the phase diagrams indicate that our moduli are of the
correct order of magnitude. We have also found that the
density relaxation is crucial for HS, important for LJ,
but negligible for Co. An interesting result of our inves-

tigation is the discovery that a HS crystal has negative
Poisson ratio at the melting point. The Poisson ratio is
driven negative by the density relaxation of purely
geometric (entropic) origin.

Recently, several authors analyzed the role of "pha-
sons" ' in elastic and hydrodynamic properties of
icosahedral quasicrystals. ' A goal of this Letter is to
complement their analysis by calculation of the elastic
moduli. Our starting point is the density-functional
determination of icosahedral quasicrystalline structures,
with the exception that instead of the linear extrapola-
tion, we used a flat extrapolation of the "liquid" Co
structure factor to a value consistent with the compressi-
bility of Co. Note that single-component HS or LJ
liquids do not seem to lead to a (meta)stable icosahedral
phase. By extending our calculations for crystals, we
evaluated the elastic modulus tensor for icosahedral
Co. " This tensor has the usual "phonon" components of
an isotropic solid and the new "phason" components as-
sociated with the relative displacement of the incom-
mensurate density waves. While the phonon part of the
tensor is positive, we found that the full tensor has one
negative eigenvalue revealing an elastic instability and a
spontaneous deformation of the icosahedral quasicrystal.
If this deformation is small, it will be generated by a
phonon-phason eigenstrain associated with the negative
eigenvalue. The most likely (minimal) reduction of the
icosahedral symmetry due to such spontaneous strain
would be to D5 or D3 symmetry. ' Diffraction patterns
of such distorted quasicrystals are shown in Fig. 1. The
main feature seen is the staggering of the spots which
would otherwise lie on a line. This is in qualitative
agreement with some recent experiments. '

The above results raise questions as to whether the
icosahedral quasicrystals are elastically stable and
whether the observed shifts might not reflect this insta-
bility rather than inhomogeneities caused by the growth
direction. ' The fact that the growth axis coincides with
the threefold axis seems to suggest that the reduced sym-
metry is (crystallographic) D3. On the other hand, D5
symmetry is suggested by the fact that the more stable
decagonal phase is often observed accompanying the
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defined by expansion of the elastic free energy F.,~ to
second order in the strain tensor e,
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where H is the Helmholtz potential of the solid, V its
volume, and p its equilibrium pressure. Subscript e indi-

cates corresponding quantities for the strained solid.
The infinitesimal strain s is assumed to be defined on the
surface of the solid so that a point at x is moved to
x, =(1+a).x and the volume V is changed to V,
= V/II 1+all. The number Ns of particles in the solid and
the temperature T are kept constant.

The potentials H and H, as well as the solid densities
n(x) and n, (x) are evaluated within a density-functional
approach. ' In this approach one calculates the grand
canonical potential G (which is Legendre transform of
H) as the minimum of a variational potential W whose
"energy" contribution is expanded around that of a

rence liquid:

FIG. 1. Diffraction patterns perpendicular to a pseudo five-

fold symmetry axis for (a) D3 and (b) D5 strains. The strain

magnitude is 0.03 and the thickness of the reciprocal-space
slice is 0.03 of the fundamental wave vector. Areas of the spots
are proportiona1 to their intensities. Only the spots with in-

dices 0 or + 1 are shown. In order to see the staggering, the

figure should be viewed at a glancing angle.

(pL ps) V =G(ps, V, T) G(PL, V, T)

(2)=mink@'
n(x)

iscosahedral phase. ' It is intriguing to note that Lan-
dau theory with an appropriate order parameter and
with commensurate lock-in terms can predict a change
of symmetry not only to D5 but also to D~o. '

The isothermal elastic modulus tensor C of a solid is
and

Ns (us NL ) (Ns NL ) +„n(x ) ln ——
z „„[n(x ) nL ~ CL ( I

x y I ) [n (y ) —nz ~ +n(x) 1 (3)

n, (x) =n((1 e+)
' x;ns, a„a,)/111+ell, (4)

where a, =—a+ha and a,=a+ha are to be determined

by minimizing hW, given by Eq. (3) with n(x) replaced

by n, (x), V by V„and ps by ps, . The chemical poten-
tial pg, of the strained solid is fixed by the condition that
the parameter ng should indeed minimize h, 8',. There-
fore, the equilibrium strained density is characterized by

where all energies are in units of kgT, p denotes chemi-

cal potential, the direct pair correlation function of the
liquid is CL, and subscripts S and L denote the solid and

the liquid, respectively.
It has been observed in the past that for simple solids a

remarkably simple and accurate theory of freezing is ob-
tained by expansion of the solid density into Gaussians
centered at the sites of a Bravais lattice. With this An-

satz the density n(x) —=n(x;ns, a,a) depends on the aver-

age solid density ng, the 3 x 3 matrix of lattice constants

a, and the symmetric 3x3 Gaussian-width matrix a.
Consequently, the functional AW becomes a function of
these parameters and the minimization is greatly simpli-

fied.
In order to determine the free energy of a strained

crystal, one must first determine its equilibrium density

n, (x). If the crystal is viewed as a uniform continuum,
then n, (x) would be simply given by n [(1+@) 'xl/ill
+all =n((1+@) 'x;ns, a,a)/II 1+sll. However, this
formula does not generally hold below the unit cell scale.
Consequently,

i
the average ns/Ill+all, the lattice constants (1+@) a„
and the Gaussian width (1+e).a, . (1+s).

A nonzero ha corresponds to a change in the number
of defects as the solid is strained. Because of long
characteristic times for diffusion of vacancies and inter-
stitials it is probably a good approximation to assume
that in a realistic experiment this number is constant.
We shall therefore take a, =a. On the other hand, a
nonzero Aa roughly corresponds to a change in the mean
square displacements of the atoms. As we already men-
tioned this can be an important effect which has been
previously neglected.

It is generally not a simple task to minimize h, 8' with

respect to six components of a, . However, since to
lowest order ha~a and the elastic energy is O(e ), the
elastic modulus C can be determined from an expansion
of hW, to order d, a . Therefore, Eq. (1) is replaced by

E,~=min(2 s:Co.s+ba:Cl'. s+ —,
' Aa:C2.ha), (5)

ha

where the fourth-rank tensors Co, C~, and C2 can be
directly evaluated by expansion of 68',. Explicit expres-
sions for these tensors in terms of reciprocal-lattice sums
involve first and second derivatives of the liquid structure
factor and will be given elsewhere. ' A minimization of
Eq. (5) trivially leads to the elastic modulus C =Co
—C~ ..C2 '..C~. The second term in C reflects the nonaf-
fine density deformation at the length scale of the unit
cell.
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We base our calculation of quasicrystal elastic
modulus on a recent density-functional calculation of
quasicrystal density. The density of an incommensurate
crystal can always be represented as a cut through a
higher-dimensional periodic crystal. The physical and
experimentally relevant icosahedral quasicrystal density
n (x ') can be viewed as a particular three-dimensional
cut through a six-dimensional simple-cubic crystal densi-

ty n(x', x ). That is, n '(x ') =n(x, x =0), where the
superscripts II and 4 denote the three-dimensional physi-
cal subspace and its three-dimensional orthogonal com-
plement, respectively. It can be also shown that minimi-
zation of Eq. (2) with respect to n'(x') is formally
equivalent to minimization of a six-dimensional h8'with
respect to n(x, x ). The hypothetical six-dimensional
and the physical liquid structure factors are related via
C, (g ',g )-=C, (g ").

The quasicrystal minimization of h, 8' was performed
with use of the Gaussian expansion of the density in six
dimensions and CL, was taken to be the structure factor
of amorphous Co. It was found that the quasicrystal is
more stable than the reference liquid. The diffraction
pattern determined from the calculated quasicrystal den-
sity was in good qualitative agreement with experiments
on real alloys.

From the explicit form of 48'in six dimensions it can
be easily verified that it is invariant under displacements
x x+u. The u compoennt of u is the usual physical
displacement whereas the component u corresponds to
relative displacement of the density waves. Small con-
stant u and u label independent degenerate densities.
The long-wavelength limit of corresponding excitations
can be considered by allowing uniform x dependence in

u: u =s ' .x and u =a ' .x . Therefore, the calcu-
lation as outlined for elasticity in three dimensions can
be applied to six dimensions. One must keep in mind
that the only nonzero blocks of e are the physical strain
e and the new strain s

The strain s has fifteen independent components and
the "elastic" modulus tensor C can be considered as a
15&15 matrix. For icosahedral quasicrystals C has only
five independent components. The usual elastic energy
—, s C ' s is isotropic because of high icosahedral
symmetry. Consequently, the block C ' ' ', which is the
usual elastic modulus tensor, has only two independent
components. The block C ' has also only two in-
dependent components, but their tensorial structure is
more complicated. Finally, the block C ' has only a
single component and its tensorial structure is also non-
trivial. " By contraction of appropriate components of C
with the physical wave vector q one can obtain the pho-
non and phason energies. ' All our conclusions about
the number of independent components and their explicit
tensorial structure agree with Ref. 15.

The tensor C can be diagonalized by the observation
that the fifteen-dimensional representation of Y spanned

by s decomposes into irreducible components according
to 15 =5 S5 S4 S 1. We find that the corresponding
four eigenvalues are (in arbitrary units) —1724.6,
3163.1, 456.2, and 3078.9. Hence, the five-dimensional
subspace associated with the first eigenvalue is unstable
indicating that a "strained icosahedral" rather than
icosahedral density minimizes AW.

The new stable structure could be determined by
minimizing (3) with the use of a more general six-
dimensional Bravais lattice. However, this is a very tedi-
ous and complicated process which can be avoided when
the equilibrium distortion of the hypercubic lattice is
small. In this case the "spontaneous" strain can be as-
sumed to lie in the five-dimensional eigenspace of the
negative eigenvalue and the associated Landau-Ginzburg
free energy that should be minimized is given by

F(y) = —1724.6i yi +O(y )+O(y )+, (6)

where tti denotes the five-dimensional eigenstrain. The
tensorial structure of the Y-invariant cubic and quartic
terms can be determined with use of group theory while
the actual coefficients can be evaluated by expanding

The most likely symmetries of the spontaneous
strain can be determined by group theory ': These are
the maximal isotropy subgroups of the five-dimensional
irreducible representation of Y. In this way we obtain
D3 and D5. '

It turns out that the symmetries D3 and D5 completely
fix the strain y except for its magnitude. Therefore, we
can calculate corresponding strained densities and their
diffraction patterns shown in Fig. 1. It can be seen that
the shift of a diffraction spot at Q has the usual contri-
bution —(1+y ) '

Q and a "staggering" contribu-
tion —(1+y' ) ' (y ) Q which is proportional
to Q~.

To summarize, we have formulated a density-func-
tional theory of elasticity. The principal results we have
obtained are (1) the negative Poisson ratio for HS solid,
and (2) a martensitic instability of icosahedral Co. The
first result calls for an independent verification, e.g. , by
Monte Carlo simulations. In order to check the accura-
cy of our approach it will be also necessary to extend our
calculation for the LJ solid to the entire liquid-solid tran-
sition line. Further work is necessary to explore poten-
tially important contributions from the three-point corre-
lations neglected in the lowest-order expansion in Eq.
(3). The second result raises the question as to whether
the icosahedral quasicrystalline structure is generally int-
rinsically unstable with respect to some other structure,
or whether it only might become destabilized at a suffi-
ciently low temperature where a martensitic transition
would occur. The present calculation cannot tell
whether the lowering of the symmetry would also involve
a loss of quasiperiodicity. This emphasizes the urgency
of extending the calculations based on more realistic
structure factors of two-species supercooled liquids. If
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the described martensitic distortion indeed occurs in

known quasicrystals, then their diffraction patterns must
show the staggering. Therefore, a careful experimental
determination of the temperature dependence of the
staggered shifts which could discriminate quenched
strains is also desirable. Such experiments would also
reveal whether the low-symmetry structure is incom-
mensurate by observation of whether the relative distor-
tions change continuously with temperature.
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