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rf Stabilization of Ballooning Modes in Tokamaks
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The use of radio frequency waves in the ion cyclotron range of frequencies is shown to stabilize bal-
looning modes in tokamaks when the frequency and spatial wave structure are appropriately chosen.
The physics of rf stabilization may provide access to high-P tokamak operation in the second stability re-
gime and may also be useful in the suppression of edge-localized modes in present experiments. Esti-
mates of the required power in the ion cyclotron range of frequencies are given for two examples of rf
stabilization.

PACS numbers: 52.35.Py, 52.35.Mw, 52.55.Fa

Dynamic stabilization is a well established idea in

plasma physics, ' but only recently has a practical means
of implementing it been proposed. Recent mirror experi-
ments have demonstrated that ion cyclotron range of
frequencies (ICRF) waves can stabilize ballooning-
interchange modes at relatively modest power levels.
Subsequent theoretical work showed that the stabili-
zation is due to the ponderomotive force of the applied
waves, modified by sidebands at the sum and difference
of the ICRF and interchange-mode frequencies.

There are several reasons for examining the physics of
rf stabilization in tokamak geometry. First, there are a
number of planned tokamak experiments with available
ICRF power (for heating) in the megawatt range.
Second, the stability and energy confinement of the
tokamak are sensitive to the edge physics which can be

strongly aAected by ICRF antennas. In particular, bal-
looning modes driven unstable by the toroidal curvature
tend to localize on the outside of the torus where ICRF
antennas can create strongly evanescent waves (with
large ponderomotive forces). Finally, the existence of a
second region of ballooning stability at high P suggests
the possibility of applying the rf power as a means of ac-
cessing the high-P regime. It is important to emphasize
that in the limit of no resonant particles the ponderomo-
tive eAect is essentially reactive, i.e. , no energy transfer
from wave to plasma is required to obtain stabilization of
the plasma. In this case, the rf power required to obtain
stability is set by other sources of dissipation (in the an-
tenna, walls, etc.).

Our starting point is the modified energy principle,
6'W =6'WMHD+ 6W, p, where

Here, BWMHD is the usual energy principle for a plasma
with isotropic pressure p and displacement g. The term
6W, f describes the change in potential energy of the
plasma due to work done against the (perturbed) pon-
deromotive force of the applied rf wave, E,~

—=E„=Q„E„e„where the sum is over polar izations (left,
right, and parallel). The first term in 6W, r is the "direct
ponderomotive term" with Se„=—(.Ve„, where e„are
the elements of the (diagonal) Stix dielectric tensor.
The second ("sideband force") term in Eq. (1) is due to
the distortion of the applied rf wave structure,

by the plasma motion at the magnetohydrodynamic
(MHD) frequency ro, « co, resulting in the generation of
sidebands at co+ cu, . The sidebands satisfy a wave equa-
tion driven by the beat current of the applied wave with

the MHD mode, i.e. ,

(c /ro )Vx Vx E„+ —e.E„+„=—( Ve. E„. (2)2 2

The form of' 6W„r given in Eq. (I) assumes no wave-
particle resonances, small inverse aspect ratio s=a/p
with e„[E„[ /16rr=up, and V

l E„ l
=Vytl

l p„ l /tip
where 2zp is the poloidal flux. In writing Eq. (2) we
have assumed no perturbation of the antenna current J
by the MHD mode, i.e., J„+„=O.

The system of Eqs. (I) and (2) (plus the analogous
wave equation for E „) describes the nonlinear cou-
pling of the applied rf wave to any MHD instability. For
high-mode-number interchange-ballooning modes we let
( =X(k~ xb/B)exp(iS), where k& =V~S and the eikon-
al function satisfies b VS=0. The energy 6'W is mini-
mized in the limit S ~ following the standard
analysis' and making use of an eikonal solution of the
sideband wave equations (2). The result is the balloon-
ing equation at marginal stability,

PE

b V(k~/8)b VX+(8'/8 )(bxk~. Vp)(bxk~. r)X —(I/48 )(bxk~ V)(E E*):(bxk~ V)eX

(I/2D. B')ilk (bxk V)e E 12/k2]X=0,

2216 1987 The American Physical Society



VOLUME 58, NUMBER 21 PHYSICAL REVIEW LETTERS 25 M~v 1987

where x =b Vb is the curvature and
J%

D„=bxk~ e. bxk~/k~ —&~~c'/cu'

with XII the parallel wave number of the rf wave. The
terms in Eq. (3) represent the magnetic line bending,
pressure-weighted curvature drive, direct ponderomotive
force, and sideband coupling, respectively. The third
term is written in a form valid for arbitrary rf-wave po-
larization, but for economy of presentation the last term
was derived under the assumption that E~~ =b E,r=0.
(The sideband term is negligible in the limit where
E~~&&E~.) For 1CRF waves with ru) 0;, the fourth
term is always destabilizing.

In order to illustrate the basic concepts, we adopt the
"standard" model equilibrium '' in which the inverse
aspect ratio c is small, the flux surfaces are shifted cir-
cles, and the plasma P (P=8zcp/B ) is small but has a
finite gradient localized radially in a thin layer. Equa-
tion (3) then takes the form

(d/dO) fdX/dO+ gX =0,

f=1+A2

g = a(AsinO+cosO) —a, r,

A =s(0 —Hp) —a(sinO —sinOo),

(4)

R q dlnN
arf +2 T, ~,P d d d s

where s =rq'/q, q =rB, /RB&, a= —Rq P', B, and Bz
are the toroidal and poloidal components of the magnetic
field, and primes denote d/dr. Here, 0 is the extended
poloidal coordinate' and Oo must be chosen to yield the
most unstable mode. The effect of the rf terms in Eq.
(4) is given by

E II, respectively.
In Fig. 1, we plot the marginal-stability boundaries

corresponding to the numerical solution of Eq. (4) with
a,f as a parameter. This procedure is strictly valid when
L,r « L~ —= (d 1 nN/dr ) ' so that the sideband term is
negligible. We observe that the eftect of increasing the
ponderornotive force (a,r) is to increase both the first and
second stability regions. Also note that for a fixed q
profile (so that the maxitnum value of s is fixed), there is
a critical value of a,f which provides stability for all a.
Within the context of the s-a model, it is possible to pro-
vide access from the first to the second stability regime
by means of rf stabilization, after which the rf could be
turned off. The scaling of Eq. (6) suggests that the en-
trance to second stability should be made at low B.

%'e now turn to two specific examples of rf stabiliza-
tion. First, motivated by the rf stabilization results in
mirrors, we consider the case of fast-wave eigenmodes.
We solve the wave equation for the applied wave
E (r) ~exp[ —i(mO+Ir. ~~z)] in a cylindrical plasma
model neglecting EII, and compute the direct ponderomo-
tive and sideband contributions to a,r(r, O). The result of
a number of computer runs varying the rf parameters
and the density profile is that a„f. is stabilizing for co ) A;
when the density gradient is localized to the plasma
edge. For a given rf eigenmode, Eq. (4) is solved on
each field line to determine the global stability properties
of the specified equilibrium.

The resulting stability diagram is shown in Fig. 2 for
the profiles q(r) =1+(q, —1)(r/a), N(r)/No=P(r)/
Po= 1

—(r/a) (where a is the plasma radius), and the
parameters m=1, cu/f), ; =1.3, No=1 X10' cm, B=5
kG, and several values of E, ,:(fdrr I E I

—/f drr) 'i .

(s)
where we let de„/dr =e„d lnN/dr, and T, represents a
term of the order (e„ I E„ I ) whose exact form depends
on the choice of rf wave. Although a,f is not necessarily
positive since e„(cu,K)d

I E„ I
/dr carries a sign, we will

show that in two difterent applications the rf parameters
(cu, K), and hence the radial wave structure, can be
chosen to obtain stability.

One can recast Eq. (4) into the canonical form
d X/dO = V(0)X, where X=JfX and

V(0) = [(s —acosO) +f(a, r acosO)1/f . —

The condition V) 0 for all 0 yields the sufhcient stabili-
ty condition a,p~ a. This gives the threshold estimate

E f=Ca'i R 'A i B (6) 0
0

FIG. 1. Marginal stability curves in the plane of shear (s)
and pressure gradient (a) for fixed values of the ponderomotive
force term {a,[). Curves shown are for the most unstable 00.

where we assumed that P=a/R and I r: (d in I E,rl '/—
dr) ' scales like the appropriate skin depth, c/co~; for
E& and c/cup, for E~~. Here the constant is C =2. 1 x 10'
V cm /' kG for E& and 7.4x10' V cm /'4 kG for
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1.0

0.& .

be estimated f'rom P =c0W/Q, where W is the stored rf
energy and Q is the rf quality factor. Estimating co = tt;
and

W= (2za)(2zR)L, re~! E~! /16m

0.6 ~

with L, r=c/or~; and e~=(co~;/0;), and employing the
sufhcient condition e,f = a to estimate the required

1.7

0

0.0

FIG. 2. Global marginal-stability curves in the plane of
average toroidal P over inverse aspect ratio vs edge q for fixed

amplitudes of the fast-wave eigenmode, E, , Curves shown

are for the most unstable 00.

(8)

where N, is the edge density and we assumed L,r=c/roz, and a single antenna of length L~ [In Eq. (8), the .factor
(2~R/L~ ) '~~ due to toroidal averaging is valid when the MHD parallel wavelength is much larger than 2+R, i.e., when

q, )&1.] For the case a =40 cm, R =140 cm, 8=10 kG, N, =2x10' cm ' (edge), L& =10 cm, q, =5, and Lz =60
cm, we find that E~~~ = 200 V/cm would be sufficient to exclude n & 8 modes from the edge plasma.

The near-field value of E!!on the plasma surface can be related to the current I~ of a model field-aligned antenna lo-

cated at r =rz, and the power dissipation computed from P =RII~, where RL is the antenna loading resistance. Tak-
ing co = 0; we obtain the scaling

E~, we obtain the scaling PQ=(64 MW cm ' kG
keV ')aBT For .the parameters a =40 cm, 8=5 kG,

0.4- and T=3 keV (appropriate for a high-P experiment)
this estimate gives PQ-4x10 MW, compared with

PQ —10 —10 MW in present tokamaks.
As a second example, and one that is more relevant to

present experiments, we consider edge plasma stabiliza-
tion using the evanescent near field of an ICRF antenna.
For this purpose, it is preferable to use an rf wave with a
large E!! component, such as that produced by ion
Bernstein-wave couplers. ' The ponderomotive force in

this case is enhanced because of both the large parallel
conductivity [!e~~! =(co~,/cd) &&! e~! ] and the shorter
radial scale length (L,r«c/cuz, ). Furthermore, because

! L~! )&!L,r! the destabilizing sidebands are negligible.
By Eq. (5), the direct ponderomotive term is stabilizing
when ! E~~! decays into the plasma. Although the sta-

We find that E, , =1.7 kV/cm is sufficient to increase bilizing effect is confined to a narro~ layer of thickness
the first stability region substantially while fields on the I „f, it is possible that this is sufhcient to improve particle
order of 3.4 kV/cm provide access to the high-P operat- and energy confinement by stabilizing edge-localized

ing regime. Detailed results ' show that the global sta- modes, particularly in H-mode operation of divertor
bility boundaries are sensitive to profile shapes and that tokarnaks. '

inclusion of E!! is required to stabilize the last flux sur- From Fig. 1 and Eq. (6) we find that "high-n" bal-

faces 0.98 & r/a & 1.00 where the E~ sidebands are looning stability is easily obtained for reasonable fields

large. The present analysis assumes that the fast-wave E!!,where n is the toroidal MHD mode number. For the
frequency can be chosen to avoid all plasma resonances more interesting intermediate-n modes such that 1« Jn
and thereby attain large-amplitude toroidal eigenmodes. « a/L, r, the ballooning eigenfunction has the usual

Thus, the spatial variation of 8 (and hence of the cyclo- a/ Jn radial scale length' in the region r & r„where r,
tron resonances) from the inside to the outside of the denotes the location of the rf-stabilized layer, i.e. ,

torus restricts this particular application to small-~ de- a,r(r, ) = l. In the rf layer r & r„ the dominant terms in

vices. 6W are the ponderomotive force and the radial line

!
The power requirement for fast-wave stabilization can bending term. The approximate intermediate-n balloon-

ing equation

b V(e~ V) b VX+(1/48 )(bxk~ Ve~~)(bxk~ V! E~~! )+=0 (7)

can be solved by separation of variables on the assumption of an exponential decay of E!!in the plasma. The solution'
shows that X decays rapidly for r & r, to avoid the stabilizing ponderomotive contribution if a,r —(a/L, rnq, ), giving a
quiescent layer at the plasma surface. Using this estimate and the definition of a,f, one obtains the following scaling for
the required E!!.

E~~t
= [(1.4x 10 V cm ' kG )/nq ] (2trR/L~) ' (a/R)Lg N, ' 8

P=(28x10 MWcm V ' ri 'kG )g RIE 8 (9)
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where the dimensionless factor g is determined by the
antenna-plasma coupling. ' Using the illustrative values
Lz =60 cm, RL =2 0, and g=3, Eqs. (8) and (9) give
the estimate P = 134 MW/n so that n ) 8 modes could
be suppressed with about 2 M W power. A self-
consistent numerical solution of the full wave equation
for E„ to be reported elsewhere' indicates that a quies-
cent layer of about a centimeter in thickness is achiev-
able for the parameters used here when co lies above the
Alfven frequency at the plasma edge.

Two examples of ICRF ponderomotive effects in

tokamaks have been presented. Other applications, e.g. ,
control of kink modes and equilibrium modifications, are
under study. Independent investigations' of rf stabiliza-
tion in tokamaks have also recently been drawn to our
attention.

The authors wish to thank R. E. Aamodt for his con-
stant interest and encouragement throughout this work,
and M. Porkolab for motivating our consideration of E~~

eA'ects. This work was supported by U.S. Department of
Energy Contract No. DE-AC03-76-ET53057.

'See, for example, the reviews of early work in S. M. Oso-
vets, Plasma Phys. 6, 421 (1964); G. Berge, Nucl. Fusion 12,
99 (1972).

J. R. Ferron, N. Hershkowitz, R. A. Breun, S. N. Golovato,
and R. Goulding, Phys. Rev. Lett. 51, 1955 (1983); Y. Yasaka
and R. Itatani, Phys. Rev. Lett. 56, 2811 (1986), and refer-
ences therein.

3P. L. Similon, A. N. Kaufman, and D. D. Holm, Phys.
Fluids 29, 1908 (1986).

4D. A. D'Ippolito and J. R. Myra, Phys. Fluids 29, 2594
(1986), and references therein.

5J. R. Myra, D. A. D'Ippolito, and G. L. Francis, Phys.
Fluids 30, 148 (1987).

J. B. McBride, V. Stefan, and N. A. Krall, Phys. Rev. Lett.
54, 42 (1985).

7B. Coppi, A. Ferreira, J. W. -K. Mark, and J. J. Ramos,
Nucl. Fusion 19, 715 (1979); J. M. Greene and M. S. Chance,
Nucl. Fusion 21, 453 (1981).

8I. B. Bernstein, E. A. Frieman, M. D. Kruskal, R. M.
Kulsrud, Proc. Roy. Soc. London, Ser. A 244, 17 (1958).

9T. H. Stix, The Theory of Plasma Waves (McGraw-Hill,
New York, 1962).

' J. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. Roy.
Soc. London, Ser. A 365, 1 (1979); Y. C. Lee and J. W. Van
Dam, in Proceedings of the Finite Beta Theory Workshop,
Varennal977, , edited by B. Coppi and W. L. Sadowski (U.S.
Department of Energy, Washington, DC, 1977), p. 93;
D. Dobrott, D. B. Nelson, J. M. Greene, A. H. Glasser, M. S.
Chance, and E. A. Frieman, Phys. Rev. Lett. 39, 943 (1977).

''J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev.
Lett. 40, 398 (1978).

' D. A. D'Ippolito, J. R. Myra, and G. L. Francis, to be pub-
lished.

' M. Ono et al. , in Proceedings of the Eleventh International
Conference on Plasma Physics and Controlled Nuclear Fusion
Research, Kyoto, Japan, 1986, to be published, paper F-I-3;
M. Porkolab et al. , ibid. , paper F-II-2.

'4F. Wagner et al. , Phys. Rev. Lett. 49, 1408 (1982).
'5For present ion Bernstein heating experiments, we estimate

g = 3. The possibility of reducing g for optimizing rf stabiliza-
tion rather than heating merits further study.

' X-H. Yang, private communication; A. Sen, P. K. Kaw,
and A. K. Sundaram, in Ref. 13, paper E-II-2-2.

2219


