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We consider a nonlinear, passive optical system contained in an appropriate cavity, and driven by a
coherent, plane-wave, stationary beam. Under suitable conditions, diffraction gives rise to an instability
which leads to the emergence of a stationary spatial dissipative structure in the transverse profile of the

transmitted beam.

PACS numbers: 42.20.Ji, 42.50.—p, 42.65.—k

A large variety of unstable phenomena have been re-
ported in optics which lead to the appearance of organ-
ized behavior in time or both in time and in space. For
example, it is well known that some optical systems,
when subjected to stationary control parameters, may
exhibit a pulsed, an oscillatory, or a chaotic output'; it
has been found also in optical bistability that spatial pat-
terns of transverse? and longitudinal® type may occur in
the switching process from the lower to the upper branch
of the hysteresis curve. To our knowledge, however, the
possibility of soft-mode symmetry-breaking instabilities
leading to the spontaneous formation of stationary spa-
tial patterns (dissipative structures)* in an initially uni-
form system has never been pointed out in the field of
optics. Such instabilities have drawn considerable in-
terest in chemistry and in developmental biology*>
where they are commonly known as Turing instabilities.
In these fields they arise generally from the coupling be-
tween nonlinear chemical reactions and diffusion. We
show here on a simple optical model that analogous phe-
nomena may arise from the coupling between light dis-
persion and diffraction in an appropriate optical cavity.

We call z the longitudinal coordinate and x,y the
transverse coordinates. We consider a cavity formed by
four mirrors, two orthogonal to the axis z with a distance
L and transmission coefficient 7 < 1, and two orthogonal
to the axis x with a distance b and 100% reflectivity.
The cavity is filled with a medium with a nonlinear re-
fractive index. A coherent, stationary, plane-wave field
E; is longitudinally injected into the cavity. We assume
that both the input and the internal cavity field are
linearly polarized in the y direction; hence, because of
the transversality condition, the internal field is indepen-
dent of y. We assume that it has the structure
E(x)cos(K.z)exp(—iwot)+c.c., where wqo is the fre-
quency of the input field E; and K, =#n,/L, with n, be-
ing a positive integer. The field transmitted by the sys-
tem is proportional to the normalized envelope function

E (x), which obeys the evolution equation

2

QE_—=—E+E,+mE(|E|2—9)+iaa_52.

o1 0x
The variable E* obeys the complex-conjugate equation.
E; is taken real and positive for definiteness. The in-
dependent variables are X =x/b, f =kt, where k =c¢T/2L
is the cavity linewidth. The parameter a is defined as
a=1/2xTF, where F=b?%/LL is the Fresnel number and
A is the wavelength. The quantity n is defined as +1 or
—1 in the case of self-focusing or self-defocusing non-
linearity, respectively, and 16 is the detuning parameter.
This model can be derived from the Maxwell-Bloch
equations for a two-level system by introduction of the
mean-field limit 7 <1, which reduces the dynamics to
the single longitudinal mode n,, the purely dispersive
limit, and the adiabatic elimination of the atomic vari-
ables. Because 71 and we want a to be of order uni-
ty, we assume that F>>1 (generalized mean-field limit).
The model (1) holds also for a Kerr medium.

The cavity supports the transverse modes cos(znx),
with n=0,1,..., which corresponds to the reflecting
boundary conditions dE/8x =0 on the mirrors orthogo-
nal to the axis x.

Equation (1) admits transversally homogeneous sta-
tionary solutions, governed by the well-known cubic
steady-state equation®

EZ=|E,| 1+ (|E,|2—9)3. )

(1)

For 6 < /3 =6, the steady-state curve | E, | 2(E?) is sin-
gle valued (Fig. 1), whereas for 6> /3 it is S shaped
and leads to a hysteresis cycle. In order to analyze the
stability of these solutions, we introduce in Eq. (1) the
decomposition £ =F;+8E and neglect all terms non-
linear in the perturbation 8E, 8E*. The Ansatz

SoE,
SES

SE (x,7)

SE*(%,7) 3)

=exp(A7)cos(nnx)
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FIG. 1. Steady-state curve of transmitted vs incident inten-
sity for 8=1. The broken portion is unstable in the self-

focusing case, when condition (6) is satisfied (see Fig. 2).

leads then to a homogeneous set of algebraic equations
for 8E, and 8E,f, and to a quadratic eigerivalue equation
of the form A2+2x+¢(|Es|%a(n)) =0, with a(n)
=an’n?. The stationary solution is unstable when one
of the roots of this equation has a positive real part for at
least one choice of n. This amounts to the condition that
the constant term ¢ be negative. Explicitly this condition
reads

1+(E |?—0)GE | 21— 0)+an)an) —2nQ2 | E,

One notes the following: (i) The first two terms in Eq.
(4) are equal to the slope dE7/d | E | ? of the homogene-
ous steady-state curves as given by Eq. (2). According-
ly, instability is possible with respect to homogeneous
perturbations, i.e., corresponding to n =0, only if the
steady-state curves present a negative-slope portion, i.e.,
if 6> 6.=+/3. (ii) In the positive-slope portions of the
steady-state curve, the system is unstable with respect to
inhomogeneous perturbation modes lying in the interval

a (E D <an) <a P (Eg D), (5
where

a FE N =nQ|E|*—6) = (|E, | *— 1),
when

|E¢|?=1and nQ2|E;|*=6) >0. (6)

The unstable domain is shown in Fig. 2 for n=1, 6=1
(see also Fig. 1). This robust instability arises for the
following reasons. If we consider only the longitudinal
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FIG. 2. Self-focusing case, 8=1. The shaded region corre-

sponds to the unstable domain in the plane of the variables
aln)=ar*n?and | E; |2

(4)

u(x) =+ {(E;—E1)/0(0)} 2cos(n.nx) +{(E; — E;) /0 (0} [f1(0) + £2(6)cos?(n.nx)],
v(X)=%xnQ2—-0)0 " "(E;—E)/0(0)} 2cos(n.nx) + {(E; — E; ) /(0 [f3(6) + f4(6)cos*(n.xx)],

®(0) =(41—300)[1+ (1 —0)21'2/1862,

and f;(8), i =1,2,3,4, are rational functions whose explicit expressions will be given elsewhere.

modes of the cavity, for T<1 the modes are well
separated and therefore the input field selects the nearest
mode (resonant mode). On the other hand, when the pa-
rameter a is of order unity there are transverse modes
whose frequency distance from the resonant homogene-
ous mode is on the order of the modal width k. There-
fore, these modes compete with the resonant mode, and
via the instability give rise to a spatial coexistence of
modes, quite different from the temporal coexistence that
arises in several oscillatory behaviors. !

In the neighborhood of the bifurcation point at which
the first unstable mode n. appears, ie., for |E;|2
=1, Er.=0+0—-6)21"2 a(n,)=n(2—0), the small-
amplitude inhomogeneous stationary solutions of (1) can
be calculated analytically by the methods of bifurcation
theory. More precisely, by defining £, =ReFE, E,=ImE,
and setting E\=E,,tu(X), E;=E,;+v(x), where
E\ s, E,s refer to the homogeneous stationary solution
and wu,v represent the inhomogeneous part of the new
stationary solutions, one finds

(7a)
(7b)
(8)

7 The = sign in front

of the main term in Egs. (7) describes the bifurcation of two nonhomogeneous stationary solutions at the critical point.
For the values of 8 such that ®(0) >0 [®(6) < 0] the two solutions exist for E; > E;. (E; <E;.) and therefore are
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FIG. 3. The absolute values of the amplitudes of the modes
n=0,1,2 are graphed as functions of the input field (solid line,
numerical; dotted line, analytical).

stable (unstable) because the bifurcation is supercritical
(subcritical). Note that the function ®(8) is indepen-
dent of n. In the self-focusing case n=+1 the bifurca-
tion is supercritical for 6< % =1.4; in the self-

defocusing case n= —1 the instability arises for 8> 2
and therefore is always subcritical. Figure 3 compares,
for 6=1, n=1, n.=1, the modal amplitudes obtained

from Eqs. (7) and (8) (dotted line) with those obtained
by solving Eq. (1) numerically (full line).

Clearly, several investigations are in order, e.g., a nu-
merical analysis to calculate the large-amplitude station-
ary states that evolve far from the critical point, in the
search for higher-order bifurcations. Our analysis is cer-
tainly related to the known results on self-focusing and
filamentation of light beams in nonlinear media. It is
especially related to the diffractive instabilities in passive
optical devices described by McLaughlin, Moloney, and
Newell.® Our model, however, is drastically different be-
cause it assumes the mean-field limit. Furthermore, the
instability reported here does not require a bistable
steady-state curve and leads to stationary instead of
dynamical structures.

Our results predict that a plane-wave input field is
spontaneously converted into a stationary beam which
presents a transverse stripe structure. An experimental
observation of this phenomenon would be of extraordi-

nary interest. The reflecting boundary conditions in x
can be realized, at least approximately, by coating of the
sides of the sample, orthogonal to the axis x, by dielec-
tric layers with a refractive index larger than that of the
sample itself. We note furthermore that the polarization
that we considered was selected because it allows for an
exact treatment of the problem. On the other hand, the
choice of an electromagnetic field linearly polarized with
the magnetic field oriented in the y direction allows for a
simple realization by means of a cavity with conducting
walls. In this case, again Maxwell’s equations imply that
E does not depend on y. The mode configuration for the
component E, is° cos(znx/b)sin(xn,z/L). For n=0
there is also a component E,«sin(znx/b)cos(zn,z/L),
but this is extremely small because E,/E «n/n, < 1, and
the condition n/n, <1 is already assumed in the deriva-
tion of Eq. (1). With neglect of E,, our previous treat-
ment remains completely unchanged.

In order to obtain a plane-wave configuration for the
input beam, it is necessary to magnify it by lenses and
use only its central part. This means a loss of intensity.
However, the power requirements for the observation of
this instability are not severe because the instability
threshold is lower than the bistability threshold.
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