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Laser Dynamics with Competing Instabilities
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Successive transitions from Hopf bifurcation to Shilnikov chaos and eventually to regular spiking are
observed in a laser with feedback on increase of a control parameter. Each one of these regimes is due to
the dominant attraction of one at a time among three coexisting unstable fixed points. Hence, each situ-
ation has a global behavior suf%ciently described by attribution of the major part of the return time to a
single fixed point.

PACS numbers: 42.50.Tj, 05.45.+b

By operating a CO2 laser with feedback in a parame-
ter range with three coexisting unstable fixed points, we
have found experimental evidence of competition among
difIerent instabilities, displaying the successive transition
from a Hopf bifurcation to Shilnikov chaos' and even-
tually to regular spiking, as a control parameter is mono-
tonically increased. These three regimes are associated
respectively with the local behavior around each of the
three fixed points. The dynamical behavior consists of
closed orbits visiting successively the neighborhoods of
the three points. Hence, diferent regimes are observed
when the relative attraction of diAerent ones of the fixed
points are dominant. A global model description could
be done by composition of successive linearized maps,
each one describing the injection into and the departure
from a small box around each of the fixed points. How-
ever, because of the dominant character of one of the in-
stabilities in each difIerent range of the control parame-
ter, we adopt a simplest interpretation, attributing most
of the orbital period around a suitable Poincare section
to the time spent in the vicinity of the dominant fixed
point.

A single-mode class-B laser is a good case for the
study of chaotic instabilities, since its dynamics is ruled
by two coupled degrees of freedom (intensity x and pop-
ulation inversion y). s Introduction of a third degree of
freedom z by feedback leads to a three-dimensional sys-
tem displaying oscillatory instabilities and chaos.

The dynamical equations are given by Eq. (l) in Ref.
6, where we also discuss the details of the feedback
scheme. There are three control parameters, the bias B,
the gain r, and the damping rate p of the feedback loop,
all the other parameters being fixed at the values report-
ed in Ref. 6, except the pump, which is here lowered
from 2 =4.2 to 2 =2.5 (2 = l being the threshold value
for laser action).

The experimental information consists of phase-space
projections on the x-z plane, obtained by our feeding an
x-J oscilloscope with a photodetector signal proportional
to the laser intensity and with the feedback signal ap-
plied to the modulator. For each phase-space portrait
the associated time plot x(t) is recorded on a digital os-
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FIG. 1. Phase-space projections z-x [(feedback voltage)-
(laser intensity)] and time plots of the intensity x(t) for low
feedback gain. Intensity increases downward. Normalization
for 8 as in Ref. 6; (a) 8 =0.259; (b) 8 =0.274; (c) 8 =0.385.
Approximate locations in the phase plane of points 1 and 0 are
indicated.

ci lloscope.
In Figs. 1 and 2 we report experimental data for two

diA'erent gain values, and in each case for three increas-
ing B values. The phenomena reported here are inde-
pendent of p, for p consistently larger than the popula-
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FIG. 3. Phase-space projection and intensity vs time .«(j)

for the same gain as Fig. 2 and for 8 =0.351. The time-
expanded plot x(t) shows clearly the role of the Shilnikov in-
stability in yielding chaotic return times. Approximate loca-
tions of points 0, 1, and 2 in the phase plane are indicated.
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FIG. 2. Phase-space projections z-x [(feedback voltage)-
(laser intensity)] and time plots of the intensity x(i) for high
feedback gain (between curves c and d of Fig. 2, Ref. 6). (a)
8=0.296; (b) 8 =0.311; (c) 8 =0.411. Also indicated are the
approximate locations of points 0, 1, and 2 in the phase plane.

tion decay rate. We have chosen p/2+=400 kHz; how-

ever, a reduction to 100 kHz does not change the ob-
served features. In the phase-space portraits as well as
in the time plots, 0, 1, and 2 denote the three fixed
points. The fixed points can be localized in a plot of the
stationary intensity x vs 8 for difTerent gain values, such
as Fig. 2 of Ref. 6. Notice, however, that the change of
p and 8 from that experiment to the present one does
not allow an accurate localization of the points in that
plot. A linear-stability analysis of the equations of Ref.
6 shows that 0 (zero-intensity solution) is a saddle point
with three real eigenvalues, two negative (stable mani-
fold) and one positive (unstable manifold), and 1 turns
from a stable point to a Hopf instability (one real nega-
tive eigenvalue and two complex conjugate ones with
positive real part) for increasing B For a wide range of.
B values, 2 has a real positive eigenvalue and two com-
plex conjugate ones with negative real part, and this is
the signature of a Shilnikov instability. With this in

mind, it is now easy to interpret the experimental facts.

In Fig. 1 (low gain) as B increases, the first fixed

point, 1, becomes unstable through a Hopf bifurcation
[Fig. 1(b)]. For higher gain, the limit cycle gets unsta-
ble and gives rise to chaotic trajectories, as we will see
below in discussing Fig. 2(a). As the loop gets wider, it
eventually approaches 0 (the zero-intensity solution).
This implies a long pause, since the laser is nearly ex-
tinguished and must wait a long build-up time before re-
visiting the region of phase space where the other fixed
points are located. This pause has a stabilizing action
since the strong contractions associated with the stable
manifold of 0 damps the fluctuations built over the previ-
ous cycle. Eventually, the return time is dominated by
this pause. The loop then corresponds to narrow spikes,
slightly perturbed by the attraction of point 1, plus a
long lethargy time in the vicinity of point 0 [Fig. 1(c)].

For high gain, two new important features appear.
First, the Hopf' bifurcation around 1 gives rise to a
subharmonic route to a local chaos, as already described
in Ref. 6. Figure 2(a) shows the chaotic motion installed
at the end of the subharmonic sequence. If we increase
B further, the chaotic trajectory widens and eventually it

gets close to the fixed point 2 [Fig. 2(b)]. The time
spent near 2 fluctuates because the trajectory is sensitive-

ly dependent on the initial coordinates of approach, as
described in detail in Ref. 1-4 (Shilnikov chaos).

As the phase point goes nearer to 2, the escape time
gets longer, so that eventually the time spent around 2 is

larger than that around 1 or around 0, thus characteriz-
ing the global behavior (Fig. 3). But, once 0 has been
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FIG. 4. Plot of the Poincare frequency fq vs bias 8 for four
different gain values a to d: increasing gain. Curves a and d
refer to the gain values of Fig. 1 and Figs. 2 and 3, respective-
ly. Curve e displays a steplike feature with hysteresis, as clear-
ly shown in the expanded inset of the square region. The shad-
ed region refers to a chaotic f~; hence the traces reported
within that region are just a single scan, while different ones
range over the shaded region. Outside the shaded region the
curves are fully repeatable.

reached; the interplay between contraction and expan-
sion rates reduces the amount of fluctuations built
around the Shilnikov instability, thus regularizing the re-
turn time and giving rise to narrow and equally spaced
spikes [Fig. 2(c)].

If we now disregard the local features of the phase-
space motion and look for a global indicator, the most
convenient one is the return time after one whole loop.
This is measured experimentally by an average rate me-
ter. Figure 4 shows the behavior of the average Poincare
frequency f~ (reciprocal of the return time) versus the
bias B, for several gain values.

For low gain, f~ has a monotonic decrease versus B.
Initially, it corresponds to the Hopf frequency around 1,
but, as the attraction of 0 prevails, f~ becomes the re-
ciprocal of the occurrence time of the narrow spikes. For
high gain, besides the irregular regime where f~ is
undefined because of strong chaotic changes (shadowed
region) a novel feature is the appearance of vertical step-
like jumps, including hysteresis at each jump (see ex-
panded inset in Fig. 4). This is equivalent to forbidden
frequency values, just the opposite of what occurs in

locking phenomena where there are horizontal steps in

frequency.
We have thus seen that the above dynamics with com-

peting instabilities can be divided into three regimes,
each corresponding to a dominant fixed point: (i) For
low B the motion starts at 1 and for increasing B we have
a Hopf bifurcation, followed by a subharmonic route to
chaos; (ii) for high B, the motion is a regular periodic

spiking with no memory of other features (0 dominant);
(iii) at intermediate B (2 dominant), the Shilnikov insta-
bility provides chaotic fluctuations in the return time.
While region (i) was already described in Ref. 6, a few
qualitative remarks are appropriate for the other two re-
gimes.

We can treat regime (ii) in the limit of large P, where
the feedback voltage z adjusts instantaneously to the
laser intensity. In order to cope with the sharp spikes, it
is more convenient to switch notation to a logarithmic
representation of the intensity, s = lnx. The two
remaining equations (I) of Ref. 6 reduce to a single one,
second order in s. In the absence of feedback (z =0)
and for a small ratio between population and photon de-
cay rates (this ratio is 10 for our CO2 laser), the
equation reduces to that of a lossless Toda oscillator
whose period is easily evaluated. By extending the
treatment of Ref. 9 to include the feedback' we ob-
tained an increasing Poincare period versus B, in qualita-
tive agreement with the experimental data of Fig. 4.

In regime (iii) we take the opposite limit, namely, that
most of the return time is spent within a small distance
of fixed point 2. The time t spent in the unit box around
that point is shown in Ref. 4 to vary as r =In(1/zo)
where zo is the oA'set at the box entrance along the ex-
panding direction. As the system moves from 1 dom-
inant to 2 dominant, it is reasonable to take I/zo propor-
tional to the bias B, since for larger B the phase point
comes closer to fixed point 2. Hence, the above solution
yields a frequency f~ = I/r monotonically decreasing with
B, in qualitative agreement with the average trend of
Fig. 4. However, to explain the steplike details, we must
consider two contracting directions, that is, the three-
dimensional character of the spiral at the Shilnikov in-
stability. In this case the corresponding return map can
be modeled in terms of a number of loops corresponding
to the number of jumps in the expanded plot of Fig. 4,
thus making it possible to evaluate the complex contrac-
tion rate and the real expansion rate of the Shilnikov in-
stability.

A detailed correspondence between the model of Ref.
4 and our physical system is given in a forthcoming pa-
per, ' together with a global theoretical picture of the
phenomena here reported.

We are very grateful to P. H. Coullet for having
clarified some aspects of our dynamical system, to
S. Ciliberto and J. A. Roversi for useful discussions, to
A. Lapucci for help in the measurement, and to N. B.
Abraham for revision of the manuscript.
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