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Field Correlations within a Fluctuating Homogeneous Medium
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The general form of the field correlations within a fluctuating homogeneous medium is determined in

terms of the corresponding source correlations. Under very general conditions, the degree of spectral
coherence has a universal form, independent of the source, if the fluctuations are isotropic. If they are
anisotropic, the degree of coherence at separations that are large compared with the wavelength directly
yields the generalized dynamical structure factor of the medium.

PACS numbers: 42. 10.Mg, 05.40.+j, 42.20.Ee

The space-time correlation function of a fluctuating physical quantity, represented by the associated complex analyt-
ic signal' Q (r, t ), is defined by

r ~(rt, r2, t t, t~) =(Q*(rt, t t)Q(r2, t2)),

where the angular brackets denote the ensemble average. The function I g (where Q could stand for density, current,
polarization, . . . ) plays a fundamental role in the physics of many-particle systems.

We assume that Q(r, t ) plays the role of source density for a wave field, represented by the complex analytic signal
V(r, t ) (V could stand for sound waves, electromagnetic waves, . . . ). Thus, for the Fourier components Q(r, co) and
V(r, co),

(W+ k 2) V (r, co) = —4ttQ (r, co),

where k =co/v (v is the velocity of propagation at co). The space-time correlation function for the fluctuations of Vas-
sociated with (I ) is

r, (rt, r2, t t, t2) =(V'(r~, t t) V(r2, t2)). (2)

For stationary random processes, I g depends on t~, t2 only through t =t2 —t~, which entails the same property for
r, . r«hen follows from a generalization of the Wiener-Khintchine theorem that

p OO

I A(r tr 2t~, t t+t) =„W~(rt, rq, co)e '"'dco,
dp

where A stands for either Q or V, and W~ (rt, rq, co) is called the cross-spectral density of A. In particular,
W~(r, r, co) ) 0 (A =Q, V) is the spectral density of A at r.

The relation between W~ and Wg is

Wv(r|, r2, co) = lim W (rv~, r , 2, co),e
s—p+

(3)

where s 0+ denotes the limit from above,

W (rtr t, 2, co)=eJ~ J G + *(k+ie,
I rt —ri I )Wg(ri, r2, co)G + (k+ie,

I r2 —r2I )d ri a' r2, (4)

G i+)(k,r ) =exp(ikr )/r, and the space integrals in (4) are extended over the source domain. Here we deal with an un-

bounded medium, so that they are extended throughout all space. This justifies the e-limiting procedure in (3): An

arbitrarily small e) 0 in an infinite medium gives rise to absorption, which always exists in an actual medium.
We want to investigate the consequences of statistica1 homogeneity; then Wg depends on r& and rq only through

r =r2 —rt. For this purpose we make the change of variables R =(rt+r2)/2, r =r2 —rt, with similar definitions for the
primed coordinates in (4). If we perform this change of variables, the integration over R' reduces to the basic integral

"exp[ik(IR'+~I IR' ~I ) —e(IR'+»
I
+ IR' —&I )& d3R ~

I
R'+ ~

I I

R' —~
I

where h=(r —r')/2. This integral can be computed by going over to spheroidal coordinates, ' with the following re-
sult:

I =ttsin(2k
I
6

I )exp( —2e
I
4

I
)/(ck

I
A

I ).
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It then follows that 8'y also depends only on r=r2 —r~, and is given by

Wy(r, co,e) =(2~/e)J"jp(k
~
r —r'~ )exp( —e

~
r —r'~ ) Wg(r', to) d r',

~here j p(kr ) =sin(kr )/kr is the spherical Bessel function of order zero.
The complex degree of spectral coherence" for an arbitrary homogeneous medium is therefore given by

(5)

(7)

fj p(k )r —r'( )exp( —e( r —r'( ) Wg(r', co)d r'
pv(r, ro) = lim (6)~-p+ fj p(kr')exp( —er') Wg(r', co)d r'

where r'=
~
r'j. Note that the factor 1/e in (5) canceled out in the ratio in (6).

Let us reexpress the results in terms of the spatial Fourier components Wg (K,co) of Wg(r, co),

Wg(r, to) =Jl Wg(K, co)exp(iK r)d3K.

The (nonnegative) quantity Wg(K, ro) is the "double" spectral density of Q(r, t). [For particle-density fluctuations,
Wg(K, co) is the dynamical structure factor. ' ] Substituting (7) into (6), we find that

f[f(K —k,e) f(K+—k,e)]Wg(K, co)exp(iK r)K 'd K
py r, co = lim

f[f(K —k, e) f(K+—k, e)]Wg(K, ~)K 'd'K

where K =
~
K

~
and f(u, e) =e/(u +e ) No.te that f(u, e) n8(u) as e 0+. The equivalent results (6) and (8)

hold for an arbitrary homogeneous medium
From now on, we assume that

J"jp(kr') Wg(r', to)d'r'&0, (9)

or, equivalently, in terms of the Fourier transform,

J"B(K—k) Wg(K, )K 'd3K =k Jt Wg(ki, )d Q, wo, (lo)

(12)

where s denotes a unit vector, and d 0, is the element of solid angle around the s direction.
According to (5), Wv(r, to, e) diverges as e 0 when (9) holds, but, by (6) and (8), p- remains well defined, and it

is given by the equivalent expressions
fO —

1

pv(r, to) =~ j p(k lr —r'l )Wg(r', co)d r' J~jp(kr')Wg(r', co)d3r' (11)
r —

1

pr(r, co) =J~ Wg(ks, co)exp(ikr s)dO, J Wg(ks, to)do,
We expect that (9) l(10)Jis valid in most situations, so that (11) l(12)J will hold, barring exceptional cases. '

We see from (11) that py is now a solution of the Helmholtz equation

(a+ k ')p~(r, co) =0,

in which all memory of the source is erased. This is a consequence of the limit e 0+; in fact, one can show that

+(k~. )2] ( ) 28 exp[+'t(k+'le)~r r ~] W (, )d
r —r'

(13)

where N, is the denominator of (6) and upper and lower signs are matched. It is also clear [see (10)] that only "on-
shell" components (

~
K

~

=k ) contribute to (12).
If, besides homogeneity, we also have statistical isotropy, so that Wg(r, co) depends on r only through r =

l r l, it fol-
lows from (11) [(12)] that

py(r, co) =j p(kr ) =sinkr/kr. (14)

Thus, we obtain the remarkable result that all homogeneous and isotronic source cross spectral densities -Wg(r, co)
satisfying (9), regardless of how different their spatial behavior may be, lead to the same degree of spectral coherence
(14) for the field This also follows . from the fact that (14) is the unique isotropic solution of (13) such that
pv(o. co) = l.

Special cases of this result are kno~n: the important case of black-body radiation and that of the field correlations
within a delta-correlated primary spherical source of radius much larger than the wavelength. ' However, black-body
radiation can also be produced by inhomogeneous sources.

Let us assume now that the source density is anIsotropic, but that it is sufficiently dilute within the background

219



VOLUME 58, NUMBER 3 PHYSICAL REVIEW LETTERS 19 JANUARY 1987

medium that we can still treat the wave propagation as isotropic (as before); this assumption is commonly made to sim-
plify the treatment. ' We expand Wt)(ks, co) in spherical harmonics Yt (s):

Wg(ks, to) = g g wt (k) Yt (s).
I Om —I

(15)

In many cases, the anisotropy is not very strong, so that (15) can be cut off at 1 =l,„, with l~,„not )) 1. Substituting
(15) into (12), we find

oo I

pz(r, to) =2[4+/woo(k)] g g i wt (k)jt(kr) Yt (r),
I Om

where i =r/r and jt is the spherical Bessel function of order l.
Let

(16)

(17)(ks co)
— Q ' tl)even) + t))odd)

W (ks co)

fWg(ki, co) d 0,
be the double spectral density normalized over the sphere

~ K~ =k, decomposed into its even-parity part ti)'"'" and
odd-parity part tl) ) with respect to inversion in K space (K~ —K); for an inversion-symmetric medium, tl) ) =0.
Then, for kr ))I,„, we find from (16)

(4tt) 'ttt (r, ro) = rt)'"'" (kr, to)sin(kr)/kr —irtf )(kr, co)cos(kr)/kr (kr » l,„). (18)

This result gives the asymptotic behavior of pv for an arbitrary homogeneous medium satisfying AO). Note that (14)
is a special case of (18), with l,„=0, and that the cos(kr)/kr contribution appears only in inversion-asymmetric
media.

Thus, if one can determine both the modulus and the phase' of pv(r, to) within a medium with anisotropic source
density as a function of r, for a fixed separation r » l,„X ()(=1/k), the result (18) yields ti12(ki, o)) and, to obtain
Wt)(kr, co), it suffices to determine its magnitude in one specific direction. Note that pv(r, co) along i determines rig
along the same direction r in K space, in contrast with the well-known light scattering technique, where the direction of
K is determined by momentum conservation.

As a specific example, let us consider a nematic liquid crystal, with average orientation aligned by a magnetic field
H =Hz. We employ as a simplified model the Ornstein-Zernike Lorentzian form' '

Wg(K co) =A(co +I ) [CtK +CJ (K +K )+XH ]

where we take' A as constant. We consider only the asymptotic form of p~ for weak anisotropy. We then find that

pv(r, 8, to) = (1 —a/3) '(1 —acos 8)sin(kr)/kr,

a=—[(C~~ —C )/C ](I+)t /g ) ' (kr )&1, ( a
~
(( I),

where g =(C~/XH ) 't2 is the magnetic coherence length. ' The shorter the value of g, the less the anisotropy is felt, as
would be expected.
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