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Potentials Which Cause the Same Scattering at all Energies in One Dimension
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Department of Mathematics, Duke University, Durham, North Carolina 27706
(Received 15 December 1986)

Explicit scattering solutions of the one-dimensional Schrodinger equation are given. A one-parameter
family of the potentials considered here causes the same scattering at all energies. The previously pub-
lished explicit examples of nonuniqueness in the one-dimensional inverse quantum problem are special
cases of the potentials given here.

PACS numbers: 03.65.Nk, 03.80.+r

Consider the one-dimensional Schrodinger equation,
d2y(k x)/dx?+k2y(k ,x) =V(x)ylk,x).

If the potential ¥ (x) vanishes as x — = oo in some sense, we find two linearly independent solutions y; and y,, which
are usually called physical solutions from the left and from the right respectively, with the boundary conditions

ik )] [Tw) . ‘

v, (k,x) =R e+ e " 40(1), as x — oo,
and

k] o] 1]

AN (o |e* Ho(l), asx — — oo,
where

o R

SW=11 0 700

is the scattering matrix, 7(k) is the transmission coefficient, and R (k) and L (k) are the reflection coefficients from the
right and from the left, respectively. Good reviews of the scattering and inverse scattering problem for the Schrodinger
equation exist in the literature. '~

Letting

myCk,x)=01/T(k)e ~* ¥y, (k,x)
and
m, (k,x)=[1/T(k)e™*y, (k,x)
we obtain*
d?myCk ,x)/dx?+2ik dmy(k ,x)/dx =V (x)m;(k ,x)
and
d?m, k., x)/dx?—2ik dm,(k ,x)/dx =V (x)m,(k,x),
with the boundary conditions
my(k,x)=1+0(1) and dm;(k,x)/dx =0(1), as x — oo,
m,(k,x)=1+0(1) and dm,(k,x)/dx =0(1), as x — — oo,
If we let

n

ik, x)= Y [ﬂ fu(x) and m(kox)= 3 [;’ g (%),

=0 ol k

© 1987 The American Physical Society 2159



VOLUME 58, NUMBER 21 PHYSICAL REVIEW LETTERS 25 MAY 1987

205
we obtain-

Folx) =1; j},(.\')=%%/}z—1(x)+%f\_ dy V) fuai(0), n=1; (1)
and
=1 g =1L =L [T arveIg-i0), n=1 )

Consider the family of potentials V(x,a,B,c,M,N) defined as
Vix,a,B.c.M,N)=c6(x)—20(x)[P'(x,a,N)/P(x,a,N)}' —20(—x)[Q'(x,8.M)/Q(x,8.M)]",

where a, B, and ¢ are real parameters, M and N are positive integers, 8(x) is the Dirac delta function, 6(x) is the
Heaviside step function, the prime denotes the x derivative, and

P(.\‘.a,N)E(X +1 ).V(J\'+l)/2+a(x +1) (N—z)m'—l)/z’ (3)
and
Q(X,ﬁ,M)E('—,\' +1 )M(M+l)/2+ﬁ(_.\’ _'_l)(M—Z)(M—l)/Z. (4)

The choice of 1 in (£ x+1) in (3) and (4) is arbitrary, but this choice causes no loss of generality.
From (1) and (2) we obtain

(N 4+m)! o+ )NNVFDR2
2"n (N — n)!

N I n
6 )m(k,x,a,N) =3 |—

n=0 k

s S (N+Hr=2)1(x + 1) NTDW DR 1

+a0(N— 3 —n) S (N —n—2)] PoaN) (5)
and
B . _ M —i " (M+m)1(—x+1)MM+1/2=n
0(—x)m,(k,x,B,.M) néo{ k ] [ ST — 1
(M +n—=2)1(=x+1) M- DW= 120 1
+pO(M — 3 — :

po r o) 2" (M —n—2)! 0(x.B.M) (©)

Using (5) and (6), we can write the physical solutions as
vk . x a,B.c .M N)=0()T(k)e*m(k ,x,a,N)+0(—x)e®m,(—k,x,B.M)+L(k)e " **m,(k x,,M)],
and
v, (k. x,a.B,c,M,N)=0(x)le " *m(—k x,a,N)+R(Kk)e®m(k ,x,a,N)1+6(=x)T(k)e ~**m,(k x,p,M),

where the transmission and reflection coefficients are to be determined from the boundary conditions

_ . v (k,x,a,B.c,M,N) 0
[(ling»f—v‘.h,lg— v, (k. x,a.f.c.MN) |~ o)
and
. ' d u//(k,x,a,ﬂ,c,M,N). . v (k,x,a,B,c,M,N)
[x“.“Sfx‘i‘B‘—]Z vk x.aBoe, M N | 76T Ly, (k x a, e MU |

Hence we obtain
T(k)=2ik/D(k,a,B,c,M ,N),
and

L(k)=E(k,a,B,c,M,N)/D(k,a,B,c,M,N),
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and
R(k)=E(—k,a,B,c,M ,N)/D(k,a,8,C,M ,N),
where we have defined
D(k,a.B,c,M ,N)=Qik —c)m;(k,0,a,N)m,(k,0,8,M)+m,(k,0,8,M)dm;(k.,0,a,N)/dx
—my(k,0,a,N)dm,(k,0,8,M)/dx, (7)
and
E(k,a.B.c. M N)=cmy(k,0,a,N)m,(—k,0,8,M)+m;(k,0,a,N)dm,(—k,0,8,M)/dx
—m, (—k,0,8,M)dm;(k,0,a,N)/dx. (8)
If we let
c+M—M—1D)Bl/U+B)+IN—(N—=1)al/(0+a) =0, (9)

both D(k,a,B,c.M,N) and E (k,a,B,c,M,N) become independent of « and B; this can be seen by use of (5), (6), and
(9) and by differentiation of (7) and (8) with respect to one of the parameters @ and 8. Thus, although the family of
potentials V (x,a,B,c,M,N) still contains one of the parameters @ and S as an arbitrary parameter, the corresponding
scattering matrix becomes independent of both a and B.

The previously published nonuniqueness examples in the one-dimensional inverse quantum scattering are all special
cases of the family ¥ (x,a,8,c,N,M) considered here: c=—2, M =1, N=1%% c=—1, M=3 N=378 =0, N=1,
M=2%%c=1,N=1,M=3"°

As a special case, ' let M =1; if we set ¢+ 1/(1+8)+[N—(N—1)al/(1+a) =0, we obtain

(N+n—1)!
2" (N—n—1)!

_NW=D)
n+1

N=1{ )"
D(k,a,B,c,N:1)=2ik+ Y [L]

n=0 k

and

"(e=n)(N+n—1)

N—1 :
E(k,a,B.C,N,1)= -
“p z [ 21 (N=n—1)!

n=0 k

The ambiguities in the one-dimensional inverse scattering are also studied by Sabatier with the use of the Darboux-
Biicklund transformation.'>~'* The nonuniqueness arises from the zero-energy poles, which are related to the value of
the scattering matrix at zero energy.'* For the families of potentials considered here, we have T(k) =0(kN+*M~1),
R(k)==x1+4+0(), and L(k)= %1+ 0(k) as k — 0. The nonuniqueness arises from the double or higher-order zeros
of the transmission coeflicient at k =0 or the unit value of the reflection coefficients at & =0,%'3-15 and specifying the
ratio my(k ,x)/m, (k. x) at k=0, x =0 uniquely specifies the parameter and hence removes the nonuniqueness. %3

When the parameters a and B are nonnegative, the potentials considered here are positive everywhere and hence they
do not support any bound states.
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