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[t is argued in the context of coupled quadratic maps that macroscopically chaotic states do not occur
in many-body systems with local interactions and random initial conditions. Such systems can exhibit
chaos, but only locally; their collective behavior is periodic or stationary. The phase diagram for the
coupled-map system as a function of control parameter and noise is presented, and the universality

classes of the phase transitions identified.

PACS numbers: 05.45.+b, 47.25.Mr

Many model dynamical systems (either maps or small
sets of coupled ordinary differential equations) originally
derived as approximations to many-body systems such as
partial differential equations (PDE’s) or cellular auto-
mata (CA), have been shown to exhibit nonstationary
(periodic or chaotic) behavior. It is commonly believed
that the full many-body system has spatially extended
modes whose time dependence is well described by the
nonstationary states of these ““zero-dimensional (OD) ap-
proximants” (i.e., approximants consisting of a finite
number of modes). In certain probabilistic CA, e.g., it
has been argued' that the spatial average (i.e., the k =0
Fourier mode) of the variables in the system can vary
periodically or chaotically in time, and exhibit all other
behavior familiar from single-variable (0D) maps.?2 Nu-
merical evidence for similar phenomena in PDE’s has
been reported.?

In this paper we study the effect on the nonstationary
states of dynamical, many-body systems of the fluctua-
tions neglected in OD approximations. Our results are
derived for noisy* coupled maps® on regular d-dimen-

sional lattices, though they should apply equally well to
other dynamical systems. Specifically, we consider the
model

. 1
w1 () =f

2d +1

+n, (). (1)

PRACS

Here y, (i) is the variable at the nth time step on the ith
site of a d-dimensional hypercubic lattice with N sites;
the function f defines the map, which is assumed to un-
dergo, as a control parameter r is increased, a bifurca-
tion sequence leading to chaos? at a critical value, r;
na (i) represents random noise with local Gaussian corre-
lations of width o (9, (D) nuw(j)) =028, .8 ,;; i' is
summed over i/ and its 2D near neighbors. Our main re-
sults are illustrated in the schematic phase diagram (Fig.
1) appropriate to the quadratic map,® f(x) =rx(1 —x),
with d>1. We now briefly summarize its central
features.

First recall that with increasing r the single variable
(0D) quadratic map with 0 =0 undergoes? an infinite se-
quence of period-doubling bifurcations leading, at
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FIG. 1. Schematic phase diagram for coupled quadratic
maps for d > 1. See text for discussion.

r=r.=3.569. .., to chaos. As r increases beyond r., an
inverse bifurcation sequence of bands (interrupted by
periodic windows) occurs.>” For ¢=0 and r <r. the
coupled map system has® linearly stable, spatially uni-
form 27-cycles which correspond precisely to those of
0D, and exhibit the same period-doubling cascade. Nu-
merical simulations show clear evidence that these cycles
persist for sufficiently small noise. For 6> 0 and N — oo
they are, however, spatially uniform only in that the
noise-averaged value (w,(i)) is independent of i, and
periodic in that (y,(i)) (or, equivalently, the spatial
average ¥ ,;w,(i)/N for specific noise variables) executes
a 2™-cycle in n. These states are connected through
period-doubling transitions, argued below to belong, for
o> 0, in the universality class of the d-dimensional ki-
netic Ising model; for o =0 they are mean-field-like.
The successive period-doubling transitions break the
discrete time-translation symmetry of (1) progressively;
i.e., the 2™-cycle is invariant only under time translations
of 2™ time steps. For any fixed o, however, the period-
doubling sequence terminates at some maximum period
which increases with decreasing o, diverging as oc— 0;
thus states of arbitrarily long period occur for small
enough noise. (This is closely analogous to the *‘bifurca-
tion gap” predicted’ for noisy 0D maps.)

As r increases beyond the point where this maximum
occurs, the system undergoes an inverse sequence of
period-doubling transitions, becoming stationary (a I-
cycle) as r approaches 4. There is, strikingly, no distinct
chaotic phase, i.e., no phase, even for o =0, in which the
time-translation symmetry is completely broken, so that
(y,(i)) varies chaotically in time. The system has a
“chaotic™ regime, but the chaos is purely local, not col-
lective. That is, the evolution of any individual variable
is chaotic, as measured by the positivity of a Lyapunov
exponent, A, computed, e.g., from the sensitivity8 to ini-
tial conditions of y,(i) for a particular i; however, the
collective behavior of the system remains periodic. A
schematic A =0 line is shown (dashed) in Fig. 1. To its
right (left), A > (<) 0, and the system is locally chaotic
(periodic or stationary). Unlike period-doubling bound-
aries, this line does nor represent a broken symmetry or
phase transition. The absence of a collective effect
means that A should go through zero in a way governed
by an effective OD map. For o> 0, A must change sign
analytically as a function of r, given that no 0D map can
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have singularities for ¢ > 0. (This would be tantamount
t0*®? a 1D Ising model having a phase transition at finite
temperature.)

For o=0 the system if often multistable’ (i.e.,
different initial conditions produce distinct stable states,
only the most robust of which is shown in Fig. 1). As ar-
gued below, however, such multistability cannot persist
at generic points of Fig. 1 for 6> 0.

To understand these results, first note that if the sys-
tem is spatially uniform and =0, (1) reduces, for an d,
to the single-variable map. Thus for r <r, the coupled
map system has spatially uniform 2”-cycle states which
correspond precisely” to those of OD. It is easy to show?®
that for any 4 and sufficiently small o, these uniform
2™M-cycles are linearly stable with respect to spatial fluc-
tuations. To establish the global stability of the cycles,
however, one must consider the nonlinear terms of (1),
It is well known*®® that models such as (1) in d dimen-
sions are identical to (d+1)-dimensional equilibrium
Ising-type models, and that, of the nonlinear fluctuations
in Ising problems, the potentially most disruptive are
“domain-wall” excitations. To see the effect of such ex-
citations here, consider the case m =1 for ¢=0, and
denote the fixed point values by w{ and 3. A finite
domain, linear size R, of y{(z) immersed in a sea of w5,
will, given the stability of both i and w3 under the
once iterated map f2, shrink with time for all d > 1. be-
cause of its finite curvature; it will disappear, as is famil-
iar from equilibrium Ising models,'® in a time propor-
tional to R2 As for Ising models, sufficiently small noise
alters only the proportionality constant'® (and w{* and
w2'), not the qualitative phenomenology; hence for
d > 1, 2-cycles are stable with respect to domain forma-
tion for sufficiently small . When o becomes roughly
comparable to | y{ —w>|, the distinction between y <
and y blurs, and the 2-cycle disorders, i.e., makes a
transition to the 1-cycle.

For m > 1, the stability of 2”-cycles for sufficiently
small o and d > 1 has been checked numerically. Again,
when o becomes roughly comparable to the smallest
spacing between cycle values, the 2”-cycle undergoes a
transition to a 2(’"—”-cycle. Thus for any given o there
is a maximum period, 2., for r <r.; Mg increases
with decreasing o, so that (Fig. 1) states of arbitrarily
high period occur near the point r =r., 6 =0.

As in equilibrium Ising systems, domain walls are
more important for d < 1. Since in d =1 walls have no
curvature, droplets need not shrink with time,” but pro-
liferate, for o> 0, destabilizing any cycle with m = I:
For d =1 only stationary (l-cycle) states are possible
for o> 0,'! though metastable states with m = 1 occur.’

In the chaotic regime of the 0D map, r>r., it is
straightforwardly shown that the spatially uniform
chaotic state is linearly unstable. This result reflects the
enormous sensitivity to initial conditions of the chaotic
regime, which is characterized by a positive Lyapunov
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exponent, A, and in which spatial nonuniformities result-
ing from either nonuniform initial conditions or noise
grow exponentially. This implies the destruction of spa-
tial coherence at long times, except in the noiseless case
for very special (e.g., spatially uniform) initial condi-
tions.

We now argue heuristically that this sensitivity pre-
cludes not only the spatially uniform chaotic state, but
any state whose spatial average varies chaotically in
time. Since any spatial average over uncorrelated re-
gions will necessarily produce a time-independent result,
it suffices to show that spatial correlations in any locally
chaotic state can extend only over some finite distance,
say & To show this, set 0=0. Now imagine that at
some time, say n =0, yo(i) is perturbed by an infinitesi-
mal amount, Syo(i); the evolution then proceeds uninter-
ruptedly according to (1). Since by assumption each
variable evolves chaotically in time, the deviation,
Sy, (D), of w,(i) from the value it would have assumed in

the absence of the perturbation, grows like &y, (i)
~8yo(i)e*, where A >0 is the appropriate Lyapunov
exponent. When 6Sw,(i)~1, ie, when n=n>
= —Inl6w(i)1/A, v, (i) has lost all memory of the value
it would have achieved had Syq(i) been zero. Since, for
near-neighbor coupling, information cannot be transmit-
ted from site to site with speed greater than unity, any
other site, j, evolves independently of Syo(i) until time
n=/|i—j|, when it first learns of the perturbation. If
|i—j| >n*, then by the time j receives this informa-
tion, i is completely decorrelated from the value it would
have had in the absence of the perturbation. Thus / and
j have been decorrelated by the perturbation. [To be
more precise, recall that for » > r. the 0D map exhibits
an inverse bifurcation sequence,?’ at each level of which
the chaotic attractor consists of 2™ (m =00, ... ,2,1,0)
bands of values of y, separated by gaps. The variable
moves chaotically within each band, but periodically
from band to band. Thus for Syo(i) <1 the variable at i
always remains in the same band as the one at j, but the
two variables are otherwise completely decorrelated. It
is this decorrelation within a given band that we refer to
when we discuss the decorrelating effect of perturba-
tions.]

If Swo(i) is due to noise, o, then similar perturbations
occur at every instant, constantly preventing any correla-
tion between / and j. Hence the maximum distance over
which the , (i) can maintain spatial coherence is n*;
with Sy (i) ~ o one obtains, for 6 1, the rough bound:
£< —Ino/A. Even for o=0, however, random initial
conditions are a source of decorrelating perturbations
which enforce &€ < —InSyo(i)/A, where Syo(i) is a mea-
sure of the randomness. Thus long-range coherence is
prohibited except for =0 and special (e.g., spatially
periodic*) initial conditions. A spatial average over the
various uncorrelated volumes of size & therefore pro-
duces, for each band, a fixed, n-independent ‘“‘average”

value of ¥, y, (()/N (or (y,(i))). This suggests that for
d > 1 and o smaller than the gaps, the system should ex-
ecute periodic motion among these 2™ average values,
ie, is in a 2™-cycle state! Hence the spatial average
does not become, even for d > 1, chaotic for r > r., but
remains periodic, undergoing an inverse bifurcation se-
quence which produces a stationary state at large #, as in
Fig. 1. (Note that the inverse bifurcations occur, be-
cause of the intersite coupling, at values of r different
from those of the OD map, and that, for d < 1, domain
walls ensure that, as for r <r., only l-cycles occur for
c>0.)

We have verified this picture by extensive numerical
simulation in 1D and 2D, for both r>r. and r<r,.
Figure 2, e.g., shows a histogram of values of the spatial
average, Y, y,(i)/N, for d =2, 6=0.01, and r=3.572,
where the OD (N =1) map has eight chaotic bands [Fig.
2(a)). With increasing NV the histogram sharpens, yield-
ing eight distinct spikes [Fig. 2(b)] whose widths de-
crease consistent with the expected N ~'/2 behavior.

None of the periodic “‘windows” of stable states which
occur? in the chaotic regime of the 0D map appear in
Fig. 1. While at =0 we did find such spatially uniform
cycles in simulations which started from nearly uniform
initial states,” we also found, consistent with earlier
work,? that the many-body system is often multistable.
Starting from more random initial conditions, e.g., we al-
ways found one of the (spatially nonuniform) 2™-cycles
just discussed. The 2™-cycles are, moreover, more stable
than the window cycles; i.e., a flat domain wall separat-
ing these two states moves preferentially to eat up the
window cycle. Thus, according to our numerics, for any
o > 0 the window cycles become metastable and only the
2™M-cycles are stable. This absence of multistability for
o> 0 is general: One expects'? that for local, spatially
symmetric interactions, two states can be equally stable
only by accident or symmetry. Since any Gaussian noise
eventually moves the system into the most stable state,
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FIG. 2. Histogram showing (a) eight chaotic bands for 0D
quadratic map at r =3.572, c=0; (b) eight spikes for 100x 100
lattice at the same r and c=0.01.
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multistability is prohibited at generic points of parame-
ter space.

To understand the nature of the various phase transi-
tions in Fig. 1, consider the transition between the 1- and
2-cycles. By iterating (1) once, one can easily show that
this equation is simply a discretized, simultaneously up-
dated version of the ordinary time-dependent Ginzburg-
Landau equation'? for describing the liquid-gas transi-
tion near its critical point. We conclude, therefore,'*
that the period-doubling transitions belong (so long as
they remain continuous) in the universality class of the
kinetic Ising model.

Since the results obtained here are based on rather
general arguments, we hypothesize that they also apply
to CA and PDE’s. Thus, in neither of these systems
should collective chaos, i.e., chaos in the amplitude of an
extended (e.g., Fourier) mode occur, except for zero
noise and special initial conditions. Hence, e.g., predic-
tions' that probabilistic CA (PCA) ought to have states
in which the spatial average of the variables varies
chaotically in time are artifacts'® of the neglect of spa-
tial fluctuations. We emphasize that the intrinsic insta-
bility of collectively chaotic states should hold equally
well for systems which achieve chaos through avenues
other than period doubling.

It should be clear from the foregoing that the absence
of collective chaos will only be manifest experimentally
in measurements on length scales long compared to the
correlation length, £. For example, in Rayleigh-Benard
experiments, & is of the order of the roll size.'® Chaos in
a macroscopic variable has been observed'” in cells with
only a few rolls—too small for the averaging effect we
predict. Experiments on large-aspect-ratio cells contain-
ing many rolls would provide a test of our ideas.
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