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We investigate the soliton excitations in the quarter-filled Hubbard-Peierls model in both the large-
and small-U limits. For a strictly one-dimensional system at zero temperature, we find that the solitons
in both limits are in one-to-one correspondence. In the presence of weak three-dimensional coupling, the
large-U system differs qualitatively from the small-U system in that the spin associated with the solitons
ceases to be a sharp quantum observable. We suggest a natural explanation of both the magnetic and
the dielectric response measured in (NPM),(Phen); -, TCNQ [(N-methylphenazinium), (phena-
zine); — (tetracyanoquinodimethanide)] and Qn(TCNQ); (quinolinium ditetracyanoquinodimethanide).

PACS numbers: 72.15.Nj, 71.50.+t, 72.80.Le

It is now well established that a topological defect or
kink may carry fractional or even irrational charge mea-
sured in units of the charge possessed by elementary ex-
citations of the unperturbed medium!~% moreover it has
been demonstrated that this fractional charge is a sharp
quantum observable.>~” The original work of Jackiw and
Rebbi! suggested a further special possibility: If there
exists a charge-conjugation symmetry in the presence of
the soliton, then the kink should have two degenerate
charge-conjugate states with fermion number F= + %.
However, there is not yet an undisputed example of this
situation in a realistic model. Indeed, it has been specu-
lated that no real system could have such properties as
long as charge-conjugation symmetry continues to hold
in the presence of the kink.®

Relevant to this debate is the suggestion® that the ele-
mentary degrees of freedom of a quarter-filled Peierls-
Hubbard system in the infinite-coupling limit (U =o0)
behave like spinless fermions of a half-filled band in the
zero-coupling limit (U =0), and that therefore there are
two charge-conjugate kink states with charge Q =+ te.
Moreover, this large-U Peierls-Hubbard model is be-
lieved to be realized in certain charge-transfer salts'®
such as (NMP),(Phen), -, TCNQ [(~N-methylphenazin-
ium), (phenazine), — ctetracyanoquinodimethanide)] and
Qn(TCNQ), (quinolinium ditetracyanoquinodimethan-
ide).

At U=o0, the ground state is 2M_fold degenerate
where M is the number of electrons, since different spin
configurations all share the same energy. It is therefore
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necessary to study the limit as U— oo in order to make
contact with realistic systems. We have studied the sys-
tem over the range from U =0 to U— oo. In this paper
we summarize the results which will be reported in detail
in a forthcoming publication.!' In the U — oo limit, the
effective Hamiltonian which governs the spin excitations
is that of a spin-+ antiferromagnetic spin chain. On the
basis of this effective Hamiltonian, we argue that the
ground state has a spontaneously broken translational
symmetry which consists of a lattice dimerization driven
by a half-filled band of spinless fermions, and a further
much weaker dimerization of the dimers, driven by a
spin-Peierls instability. The ground state thus has the
same symmetry as for U =0. Moreover, we find that the
solitons of this U — oo double dimerized system have the
same quantum numbers as those of the U =0 system
though their profiles and relative creation energies are
quite different. For all U we find three types of solitons:

a spin- 3, neutral, amplitude soliton S¢/2 a spinless

phase soliton with Q== e, S, and a spin-1,

Q== te, mixed phase and amplitude soliton, S,‘//zz.

The neutral soliton is self-conjugate, but the degenerate
charged-soliton doublets are not. For U large and T#0,
the spin-Peierls instability is very weak, and is likely to
be suppressed in many experimentally relevant cases.
Thus, we conclude this paper by analyzing the model in
the absence of this distortion and its relation to experi-
ments.

The Peierls-Hubbard model is defined by the Hamil-
tonian
c:‘ c , 1)
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where c,,*'j creates an electron of spin s on the latice site n, and u, denotes the displacement of the nth lattice site. We
treat u, as a classical field. 1, a, K, and U are coupling constants and NV is the number of lattice sites.

At U =0, this model is identical to the Su-Schrieffer-Heeger (SSH) model,* except that the electron band is only
quarter-filled, i.e., kp=n/4a, where a is the lattice constant. According to Peierls’s theorem, the ground state is a
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charge-density-wave (CDW) state with period 2kg. In contrast to the half-filled SSH model, both the amplitude and
the phase of the CDW condensate play a dynamical role in this system.'? For instance, we can define the dimensionless

order parameter by

A (n) =(2altg)uncos(zn/2), Ax(n) =(2a/ty)uy,sin(zn/2),

or by
Aln)e® ) =Ay(n)+in(n).

(2)

The various kinds of soliton excitations can be studied by consideration of the continuum limit of the U =0 discrete

model (1):

H _ oo [ - dx
" Zs:fdx Vs (x)[lozx/?aax+A(x)crxexp(:cze(x))]y/s(x)+f ;

where

IVL(X)

u/(x) = WR(«’C)

represents the electronic states near kf and — k¥, respec-
tively, and A =a?/Kty is the dimensionless coupling con-
stant. The last term arises from the umklapp process
and is the source of the nontrivial phase dependence of
the effective potential.'>!3 In the small-A limit, 4 =(1/
27)InAg."3  For uniform order parameter, one finds
A=Ag=22Waexp(—n/2~/21), where W is the mo-
mentum cutoff in the continuum model.

There are four degenerate ground states A4,B,C, and
D with A(x) =Aq and 6(x) =0, n/2, r, and 37/2, respec-
tively. The various solitons are domain walls between
degenerate phases, and are partially characterized by the
change in the phase A8 of the order parameter. For in-
stance, the phase boundary between 4 and B phases is a
AO=r/2 soliton, while that between 4 and C phases is a
A8 =r soliton. We have studied the nature of these soli-
tons both by numerically solving the discrete model to
find the lattice configuration which minimizes the soliton
creation energy and by approximate solution of the con-
tinuum model (see also Zhang, Kivelson, and Gold-
haber'' and Hubbard and Ohfuti and Ono'4). The re-
sults can be summarized as follows. (1) There is one lo-
calized state associated with the z/2 soliton. If the state
is unoccupied, the soliton has charge @ =+ |e| and spin
0, and is a pure phase soliton with A(x)=A¢ and
0(x) =tan ~'exp(x/l), where [=a/A§QA4)"2. Its
creation energy is E/to=(2A4)"2Ad+0(A3). If the
state is singly occupied, the soliton has spin — §+ and
charge 0=— % |e|. It has mixed phase and almplitudt:4I

Ry...Ry ¢t . T
Fn,...nM Cnyop """ Cnpgoop

|Q,00,...,0m)=cC >

n < ... <ny

+

A% (x)

m (3)

— AA*(x)cosd6(x) |,

|0),

character with
A(x) = Agtanh(x/&y), 6(x)=tan ~'exp(x/I),

and creation energy E/to=2A0/n+(2A4)"2 Ad+0(A]),
where & =a/Ag is the correlation length. If the state is
doubly occupied, the soliton has creation energy of order
Ao, and hence it is unstable with respect to formation of
a topologically equivalent multiplet of three A8= —x/2
pure phase antisolitons. (2) There is also one localized
state associated with the A@=nr soliton. The soliton is
only stable if it is singly occupied, in which case it has
0 =0 and spin §. This soliton is a pure amplitude soli-
ton, and is precisely analogous to the neutral soliton in
polyacetylene. An exact solution of the continuum mod-
el for this case gives A(x) =Agtanh(x/&y), 8(x) =0 for
its profile and E/to=2A¢/r for its creation energy.

Having identified the stable soliton excitations at
U =0, we now proceed to study the limit U — oo in (1).
Rice and Mele® noticed that at U =oo, the electrons can
only singly occupy the sites, and two electrons cannot
cross each other. It follows that the spin configuration is
a constant of motion and the Hilbert space splits into 2™
disjoint subspaces, each with a definite spin configu-
ration. Within each subspace, the electrons behave
effectively like noninteracting fermions. In this case, the
band of spinless fermions is half-filled, i.e., kf =n/2a.
The lattice will dimerize and open a gap in the electronic
spectrum about the Fermi level. The ground state corre-
sponds to a completely filled valence band, which can be
represented equivalently as a state in which all the Wan-
nier states | R,) are occupied,7 where | R,) is exponen-
tially localized about the center of the strong bond at po-
sition R,. The ground state of a definite spin ordering
can be represented by

(4)

where ¢, 5, creates the jth electron from the left at site n; with spin o;. F is the determinant of the matrix W;;, where
Wi =(n; | Rm/) is the Wannier function and ¢ is a normalization constant.

At finite U, the effective Hamiltonian mixes the different spin configurations, since two electrons can occupy the
same site as a virtual state. By straightforward degenerate perturbation theory we obtain the matrix elements of the
effective Hamiltonian H.g between the degenerate ground states (5). The resulting effective Hamiltonian can be cast
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into the form of a one-dimensional spin- + Heisenberg chain,

M
Heﬂ=ZJ,-(S,-~S,~+1—1), (5)
i=1
where
_C2 R,..Ry~R,.. RiRi4+,...Ry Cz 2 R,...Ry\2
Ji__l—J_ Z ["it"i+15|+"n"i+1F"|~»-'1M F"lv-v"i—lni"'"M +-L—/_ Z ["151+"iv"i+1(F"i-~"M ) . (6)
n <...<ny m<...<ny

In the case where the lattice is perfectly dimerized, J; is actually independent of i. However, as we shall argue later,
the lattice is not simply dimerized, but is doubly dimerized because of the spin-Peierls transition.

It is a bit difficult to study this transition in general since J; is rather complicated because the nth spin can only be
loosely associated with the nth strong bond R,. However, the model is quantitatively unchanged if we study it in the
extremely dimerized limit where the nth spin is localized on the nth strong bond. Thus, we consider the limit in which
the hopping matrix elements between the strong bonds ¢, are much larger than that between the weak bonds ¢, so that
we can treat f,, as a perturbation. To the zeroth order in ¢,, electrons can only hop between the sites connected by the
strong bonds. To second order in t,, the ground-state spin degeneracy is removed by the hopping between the weak
bonds. The resulting effective Hamiltonian is of the same form as Eq. (5), but with

=2, ‘ + ‘ %)
U T WU gter)  U—e)tes) |
where e+ =3 [U+ (U2+16¢2)'?] and 1,,, is the weak |
bond between the ith and the (i + 1)th strong bond. the spin-Peierls ordering. Moreover, since the charac-
Because of the spin-Peierls transition, the weak bonds teristic energy of spin excitations is so small, even within
also dimerize in the ground state to form alternating a strictly one-dimensional model there is a large range
weak and very weak bonds [Fig. 1(a)]. The various de- where the temperature 7 is large compared to the
fects can be analyzed in the same way as before; in par- creation energy of the neutral soliton, and hence the
ticular, we identify the three stable solitons as the spin-density 4k g ordering is completely destroyed, yet T
=1|e|, $=0 soliton [Fig. 1(b)], the Q=— % |e], is still small compared to any of the charged-soliton
S =1 soliton [Fig. 1(c)], and the Q =0, S=F soliton creation energies. Thus, it is interesting to consider the
[Fig. 1(d)]. excitations of the large-U system in the absence of a 4kg
Therefore, in the extremely dimerized limit, for any U (double-dimerized) distortion. In this case the ground
the soliton quantum numbers are in one-to-one corre- state is twofold degenerate, and there is only one type of
spondence with those of the U=0 limit. There is no soliton. Simple counting arguments suggest that this sol-
phase transition at 7=0 and finite U. However, at large iton has Q==+ + |e| and spin * §. Thus, one might
U, the spin-Peierls ordering becomes very weak. Even a conclude that there is actually half of an electron associ-
small three-dimensional coupling is enough to destroy ated with the soliton!

This counting argument is correct as far as the expec-
tation value of the spins is concerned. However, al-

. though the charge of the soliton is a sharp quantum ob-
@y ¢ \ ¢ \ t ' servable,>® the spin is not. To see this, we define the
spin associated with the soliton as S=Y, f(n)s(n)

®) ¢ s ! s 4 s where.s(n) is Fhe spin de.nsny operator a_nd f(n)~ is a
= ° o—o sampling function which is 1 over a region of size L
about the soliton, and falls to zero beyond it. The mean

square fluctuation of the spin can be computed easily

(e) (,; t v I \ t GL from the spin-spin correlation function G (n,m)=<{s(n)

-s(m)) —(s(n))- (s(m)) according to

@ 4 ¢t v t v ¢

A S A S SR S (a8 = ¥ (1) = ()G (nm), (8)

FIG. 1. The ground state and various soliton configurations

. — 0 _
in the extremely dimerized limit. Double lines, single lines, In the presence of the soliton, G (n,m) =G"(n—m)

and broken lines represent strong bonds, weak bonds, and very +F(n,m),. whert’f G is the Correlatloon fung:tlon (_)f the
weak bonds, respectively. Electrons localized on the strong perfect spin chain and F(n,m)~G°(n)G°(m) is the
bonds are represented by up and down arrows according to correction due to the presence of the soliton. In the
their spins. spin-Peierls state G%(n) is exponentially localized as a
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result of the gap in the spin-wave spectrum. Thus, for L
sufficiently large, the fluctuations associated with the sol-
iton spin are exponentially small. Without the spin-
Peierls order, however, G%(n)~1/|n|, and hence the
fluctuations are divergent. No particular spin can be as-
sociated with the soliton!

We note that in both (NMP),(Phen); -, TCNQ and
Qn(TCNQ),, the x-ray scattering data show the pres-
ence of a 4kp distortion, but no 2k distortion.'® We
thus conclude that these materials are well described by
a large-U quarter-filled Peierls-Hubbard model with the
spin-Peierls distortion supressed. Experiments by Ep-
stein et al.'% on the magnetic susceptibility have been in-
terpreted in terms of a weakly disordered Heisenberg
spin chain, with a defect concentration proportional to
the deviation in x from x=0.5 (the commensurate
value). This has a natural interpretation in terms of a
concentration of solitons proportional to | x —0.5|. This
interpretation is lent further support by the fact that the
x-ray scattering shows commensurate lock-in for a finite
range of x about x =0.5. Experiments on the dielectric
response and conductivity have been interpreted in terms
of rather mobile, metallic, highly one-dimensional
charged carriers in the presence of disorder.'> The fact
that the charge response of the system is characteristic of
rather mobile electrons and the spin response is charac-
teristic of an insulator is striking. It has a natural ex-
planation in our model in terms of the almost complete
decoupling between charge carriers (solitons) and the
spin degree of freedom which occurs when the spin-
Peierls transition is suppressed. We will discuss this

point in greater detail in a future communication.
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