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Soliton-to-Band Optical Absorption in a Quasi One-Dimensional Pt"-Pt'"
Mixed-Valence Complex under Hydrostatic Pressure
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A midgap absorption band is observed in the quasi one-dimensional semiconductor [Pt(en)2]-
[Pt(en)2C12] (C104)4 under hydrostatic pressures at room temperature, where en is ethylenediamine.
The transition is allowed only for the polarization parallel to the —Cl—Pt"—Cl—Pt' —chain. The
peak position remains near the middle of the Peierls gap at any pressure up to 2.2 GPa. The intensity in-
creases exponentially with the peak shift. The gap states responsible for this band are attributed to soli-
ton excitations corresponding to kinks of the charge-density wave.

PACS numbers: 71.38.+i, 78.40.Ha

The commensurate and nearly commensurate charge-
density wave (CDW) systems support a soliton excita-
tion which corresponds to the formation of a domain wall
connecting two degenerate phases of periodic distortion
of lattice and electron density. Su, Schrieff'er, and
Heeger have developed a theory of such a kink soliton in
long-chain polyenes with the commensurability index of
2. ' They have evaluated the energy of formation, width,
mass, and activation energy for motion of the soliton by
the Green's function method taking the lattice discrete-
ness into account explicitly. Subsequently, Takayama,
Lin-Liu, and Maki have extended the discrete model to
the continuum case which is valid in the limit of weak
electron-lattice coupling. These theories show that the
soliton state may be described in terms of the order pa-
rameter d, (x) =Aotanh(x/(), where 2ho is the Peierls
energy gap and g measures the width of the domain wall.
The electronic level of the soliton lies at Ao, i.e. , right at
the middle of the Peierls gap. This unique property has
been investigated through optical absorption experiments
in trans-polyacetylene films doped lightly with impuri-
ties. Orenstein and Baker have observed the transient
optical absorption due to photoexcited solitons in un-
doped polyacetylene fibrils. This observation has led
them to study the recovery kinetics of thermally inequili-
brated solitons.

The energy of formation, E„ofa soliton is shown to
be 0.6ho in the discrete model, ' and 2ho/tr=0. 64ho in
the continuum model. The energy of formation is a
fundamental parameter for the characterization of a soli-
ton since it is crucial to statistical properties. Very little
experimental verification, however, has been reported on
the formation of a kink soliton in an intrinsic material
where its physical properties can be controlled by exter-
nal parameters such as pressure. The significance of ex-

citing a soliton in an intrinsic material lies in the fact
that it can be formed anywhere in the medium, and can
propagate indefinitely unless it encounters some structur-
al irregularities due to size and/or imperfections such as
is the case with trans-polyacetylene. In this Letter, we
report experimental results of optical absorption which
show the presence of solitons in single crystal of
[Pt(en)q][Pt(en)zC]2](C]04)4. Here, en refers to the
ethylenediamine molecule. A midgap absorption band
appears upon the onset of hydrostatic pressure, and its
intensity increases markedly with pressure. This new
effect is interpreted to arise from an increase in the soli-
ton density due to the decrease in the order parameter,
and thus in E, .

[Pt(en) z] [Pt(en )2C]z] (CIO4)4 is one of halogen-
bridged mixed-valence platinum complexes (hereafter
abbreviated as HMPC). Valence electrons in HMPC
form a linear-chain CDW with its commensurability in-
dex of 2 in accordance with trans-polyacetylene. Pt and
Cl ions form either —Pt„"

1
—Cl—Pt„' —Cl—Pt„"+~—

or —Pt„'
1
—Cl—Pt„"—Cl—Pt„'+1—chains which are

degenerate in energy. These chains are oriented along
the crystallographic b axis. They are separated from
each other by 8.3 and 9.7 A towards the (101) and the c
directions, respectively, so that the interaction between
chains is very weak. The electron-lattice interaction
within the chain consists of coupling of Pt ions with in-
tervening Cl ions: The charge transfer between neigh-
boring Pt ions is induced by the displacement of the Cl
ion from the midpoint of two Pt ions. This is in contrast
to the electron-lattice coupling in trans-polyacetylene, in
which the coupling originates from the mutual displace-
ment of adjacent C atoms. Ichinose has proposed the
possibility of the soliton formation in HMPC. Recent-
ly, Onodera has examined the physical implication of the
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if the normalized soliton density n, is sufticiently low,
where l represents the distance between two adjacent
CH groups along the chain direction and fo the oscillator
strength of the interband absorption in the absence of a
soliton. In HMPC, 1 corresponds to the distance be-
tween adjacent Pt" and Pt' ions. Applying Eq. (1) to
our experimental results, we have (g/l)n, =3x10 at
atmospheric pressure.

The Peierls gap opens between d, 2 states of Pt andIl

Pt' which have bonding and antibonding characters in

connection with the p, states of Cl, respectively. The9

dimerization is driven by the collaboration of the
electron-electron repulsion between the neighboring Pt
ions and the electron-lattice coupling. The kinetic ener-

gy and the on-site electron-electron repulsion compete
with these interactions. Nasu has developed a mean-field
theory of this system, and discussed its optical proper-

0. |
0 -0,05 —O. I 0

Energy Shift (eV)
FIG. 3. Plot of the integrated intensity vs the shift of the 8

band.

—O. I5

band increases considerably as the Peierls gap de-
creases. ' This effect would raise the apparent rate of
the shift of the absorption edge. Consequently, one may
safely say that the energy of the 2 band remains near
the middle of the Peierls gap regardless of their varia-
tions. Moreover, both bands disappear in the E&b po-
larization. These characteristic behaviors can be ex-
plained in terms of the soliton model that the 2 band
arises from the optical transition from (to) the occupied
(unoccupied) mid-gap level to (from) the conduction
(valence) band. Besides, we notice that the spectral line
shape is asymmetric with a tail on the higher-energy side
if the contribution from the CT band is subtracted. This
aspect is also characteristic of the soliton spectrum. '"

The intensity of the 2 band is very sensitive to pres-
sure. The integrated intensity increases rather exponen-
tially as a function of the energy shift as shown in Fig. 3.
The oscillator strength amounts to 1.2&10 at 2 GPa,
which corresponds to 0.4% of the oscillator strength, 3.0,
of the CT band at the atmospheric pressure, ' Accord-
ing to theory of the optical absorption in trans-
polyacetylene, the oscillator strength f, of the soliton ab-
sorption is approximately given by'"

f =2.8 2 (g/1 )n fp,

ties. ' According to his results, the energy gap decreases
quadratically with the transfer energy, to, of the d, 2 orbit
between Pt ions. The transfer energy increases upon
contraction of the chain, causing the system to be more
metallic. Therefore the energy gap and ho decrease with
pressure. Tanino et al. have also observed a pressure-
induced red shift of the charge-transfer absorption edge
in Walff'ram's red salt, which is another member of
HMPC. '

g/l in Eq. (1) can be rewritten in the Takayama-Lin-
Liu-Maki model as 2rp/Ap The . fractional decrease in
Ao can be estimated to be =7% at 2 GPa from Fig. 2. A
similar amount of increase in to is expected in the first-
order approximation. Consequently, the fractional in-
crease in g/l is expected to be (10-20)% at 2 CJPa,
which is negligibly small in comparison with the increase
in f, It follo. ws from these estimates that the change in

f, induced by pressure arises primarily from the change
in the soliton density. The behavior of the integrated in-
tensity of the 2 band (Fig. 3) suggests that the density is
limited by an activation energy which decreases as do
under pressure. If the activation energy is assumed to
correspond to the formation energy, the slope of the ex-
perimental points of Fig. 3 yields E,/60=0. 32, which is
comparable with theoretical values (—0.6) mentioned at
the beginning of this Letter.

There are two mechanisms of the thermal excitation of
solitons. One is the ordinary soliton-antisoliton pair ex-
citation on the uniform part of a chain, where a single
soliton cannot be created because of topological restric-
tions. '" The other is the injection of a single soliton
from an edge of the chain. A soliton and its antisoliton
can be created individually but alternately at the edge
because the topological restriction is lifted by the discon-
tinuity of bonding. Though it is difficult to determine
which is the case from our experimental results, one can-
not neglect the single-excitation process because the
crystal of [Pt(en)2] [Pt(en)qClq](C104)4 consists of
columnar structures with a length of 5 to 8 pm and a
thickness of about 1 pm. ' We recall here that the 2
band appears discontinuously at a very low pressure.
This fact indicates that the rnidgap absorption is promot-
ed by a slight modification of lattice. It is likely that the
initial compression of the crystal induces a modification
of the atomic arrangement near the edge of each colum-
nar structure such as to diminish the potential barrier
against the injection of a soliton. The 2 band is oc-
casionally observed even for virgin samples. It does not
disappear if the sample is cooled down to liquid-nitrogen
temperatures. This fact implies that solitons are
confined within chains. This is plausible because the re-
sidual potential barrier and/or the activation energy for
motion of a soliton could be significantly large in com-
parison with thermal energies at low temperatures.

In conclusion, the optical absorption band which ap-
pears within the Peierls gap in [Pt(en)2][Pt(en)2C12]-
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(Cl04)4 exhibits a unique behavior under hydrostatic
pressure. The peak position, the spectral line shape, the
polarization property, and the pressure dependences of
the intensity and the peak position are consistently ex-
plained in terms of the soliton model which is similar to
the case of trans-polyacetylene. The pressure depen-
dence of the intensity suggests that the kink solitons are
created predominantly at the edge of the halogen-
bridged Pt chain. The detail of the excitation mecha-
nism is not, however, clear yet because we have very lit-
tle information on crystallographic properties involving
the lattice imperfections in this material. A firm
identification must, therefore, await experimental studies
of the microscopic structure under pressure.
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