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Quantum Conductance in Networks
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We consider the quantum transport in networks. Arguments similar to those for the quantum Hall
efTect show that the averaged transport coefficients are quantized. Numerical calculations for a three-
loop network yield the values 0, 1, and —1, depending on the fluxes threading the loops and the quantum
state of the net. We characterize the conductance properties of such networks. We also discuss general
properties of the transport coefficients in general multiloop networks.

PACS numbers: 73.60.Aq, 02.40.+m, 72.20.My

It is known that there is a range of circumstances
where the Hall conductance, at low temperatures, is a
nonzero integer. ' It is natural to inquire whether there
are other systems with integer nonzero conductances. As
we shall explain, networks are such systems: A network
with L loops has L(L —1)j2 integer conductances which
characterize the quantum state of the system and reflect
its multiconnectivity. Like the Hall conductance, they
are nondissipative and can be either holelike or electron-
like, but unlike the Hall efTect this does not reflect any
band-structure properties.

The transport coefficients of the network, 2'~, are
defined as the charge transported around loop l when the
flux threading the mth loop, p, increases adiabatically
by 2z, the unit of quantum flux. Within linear-response
theory, it turns out that this is equivalent to the (time-
averaged) ratio of the current in loop l to an infinitesimal
emf acting on loop m. We shall concentrate on the
cases where the network has three loops and l and m are
distinct. We shall also assume throughout that the fluxes
are changed sufficiently slowly for the adiabatic limit to
hold. In particular the energy levels of the network are
assumed to have nonvanishing gaps and we exclude situ-
ations where levels cross. Under these conditions, which

guarantee no dissipation (dissipation arises when l =m
and the adiabatic limit does not hold), the nondiagonal
conductances have nonlocal features. Also, the quantum
(coherence) effects discussed below require temperatures
which are low compared with a typical gap energy.
Since energy gaps scale like (length) this favors small
networks. This dictates temperatures in the millikelvin

range and emf in microvolts for mesoscopic networks.
Quantum coherence efl'ects associated with the dissipa-
tive conductance in single mesoscopic loops, including
nonlocal eA'ects, are discussed by Sharvin and Sharvin.
As yet, there are no experiments nor theory on the trans-
port coefficients in two- or three-loop networks.

Consider, for example, a three-loop network made of
mesoscopic, thin (metallic) wires (Fig. 1). Each loop is

threaded by an independent flux tube p~, j =1,2, 3. In
comparison with the Hall efl'ect, p3 plays the role of the
magnetic field on the sample, p~ can be thought of as a

time-dependent flux replacing a battery, and p2 is the
analog of Laughlin's flux tube. gi2 is then the analog of
the Hall conductance. Because of the analogy one may
expect that gi2 will be quantized and will be a nontrivial
(antisymmetric) function of p3. This, as we shall see, is
essentially correct provided that suitable averaging is in-
troduced: Let

+2K

(gt )(p) —= „dy gt (y)

be the conductance averaged over the flux in the current
loop m (p denotes collectively the three fluxes).
(g~q)(p3) (or any other permutation of 1,2, and 3) is an
antisymmetric steplike function of p3 with steps at in-

teger heights. This holds in great generality (i.e., even
with electron-electron interaction, and also for thick
wires and for more complicated networks) provided the
system is in a pure quantum state which does not become
degenerate as pi and pq are varied. It is a consequence
of the fact that Kubo's formula for the (averaged) con-
ductance has a topological interpretation being a first
Chem number.

Here we shall describe parts of our numerical results
and sketch the general theoretical structure. Details
shall be presented elsewhere. ' '

From the theory of superconducting networks' it is
known that the analysis of the Schrodinger equation for
the network of Fig. 1 (with one-dimensional wires)
reduces to the study of 5 & 5 matrices (5 is the number of

FIG. 1. Three-loop network with seven edges and five ver-
tices. Each loop is threaded by a flux tube. The Hamiltonian
for the network with point junctions is a 5&&5 matrix. This net-
work has nonzero quantized conductances.
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vertices in the network) of the tight-binding type. It is therefore not surprising that the computation of the transport
coefficients of the network also reduces to a (5&&5)-matrix problem. The details of the reduction shall be given else-
where. In the matrix description the wave function sits on the vertices of the network. Consider the tight-binding
H am i 1ton i an

H(t, t ':p) =n, 6,,, , + (1 —6,, , )gb [v, bl [v', b]exp( —i[v, b] y ).

t and t.
' are vertex indices. n, , is the "coordination num-

ber" of the vertex t. b is a (directed) edge index, and
[t,b] is the incidence matrix, i.e., [v, b] is 1 if the edge b

points into v, —
1 if it points out of v, and 0 otherwise.

yt, —=fbi, where 2 is the vector potential associated to
the fluxes p. The lengths of all the edges b is set equal to
one. H(p) is identical to the de Gennes-Alexander'
network Hamiltonian except on the diagonal. This slight
modification makes it somewhat easier to handle. (The
de Gennes-Alexander Hamiltonian gives an implicit ei-
genvalue problem. ) Because of our interest in topologi-
cal invariants the difference is presumably immaterial.

Diagonalizing the Hamiltonian one finds that the
Chem number in the ground state, defined by Eq. (3)
below, is

0 for —zc/3 & ps mod2n & x/3

(g[ 2)($3) =
1 for ~/3 & y3mod2~ &
—

1 for —z & &3mod2z & —ir/3.

(2)

(«)(tt) =ch(P, T1 (tt)). (3)

It follows'' that (g)i (p) is gauge invariant, periodic in

p, antisymmetric in 1 and m, and independent of pi and

For the excited states one finds qualiatively similar, i.e.,
nontrivial, antisymmetric, periodic steplike functions
that take the values 0, 1, and —1. One also finds that
(g i 3) ((pz) (gz3) (ii)i ) =0 identically for all the states.
Because of the topological nature of the results the fact
that the network is made of three equilateral triangles is
immaterial and one finds the same qualitative features in

any network which is a deformation of Fig. 1.
To get a complete description and insight into the re-

sults we have to introduce some formalism. This is also
necessary in order to describe the actual computation.

H(p), the exact Schrodinger operator of the network,
depends parametrically on the fluxes p. For fixed (ti, it
has discrete spectrum. Because of the periodicity in the
fluxes the parameter space can be identified with T, the
three-torus, i.e., we can identify p~ with p, +2m. '

Let P(p) denote a projection on a spectral subspace of
H(P) and C be a closed, two-dimensional surface in T3

(equal to a closed two-chain). Suppose that P((ti) is
smooth on C. It is a standard fact that the Chem num-
ber, Ch(P, C) =(i/2x) fcTr[dPPdP], is an integer.

If the initial state of the system is given by P(p) and
there is no level crossing on Tt ((ti) (the two-dimensional
slice of the three-torus going through (t and indexed by I
and m), then Kubo's formula reads ' (see Ref. 10 for
a rigorous derivation)

Ch(Pq, T23(tt i)) =Ch(Pq, Ti3(tt, )) =0,

Ch(P, , Ti2(~j») =&(q, I ).
(4)

This gives a complete characterization of the nondissipa-

TABLE I. Chem numbers for spheres surrounding points of
degeneracy in the network of Fig. l. a—:arccos( —,

' —J2).

Gap Coordinates

( —a, a, 0)
(a, a, a/2)

Chem number

1

—1

1

—
1

1

—1

!
, and is quantized to be an integer. Also, in the ab-

sence of magnetic fields besides p, which we shall as-
sume, time reversal leads to the Onsager relation
(gt )(y) = —(gi )( —(t).

It is known that the Chem numbers are closely related
to degeneracies. Let D& be the set of points where the
qth gap in the energy spectrum closes. According to the
von Neumann- Wigner theorem '

D~ is a discrete set.
The second homology group of T /D~ is spanned by
three two-tori, Tiq, T23, and Tii, and ! Dq! oriented
two-spheres S(6) that surround 6E D~. An arbitrary
closed two-chain in T /Dq can be written as a sum of the
basic spheres and tori with integer coe%cients. This re-
lation lifts to a relation for the Chem numbers. It fol-
lows that the set of 3++!D~! Chem numbers contains
all the information about the net.

Relations among the basic Chem numbers follow from
the following facts:

(1) gz& D S(6) is homologous to zero, so that
gqED Ch(Pq, S(6')) =0, for all q, where P~ is the pro-
jection on the spectral subspace with energies up to the
qth level.

(2) The set Dq is invariant under inversion p
and for any Gin D~, Ch(Pq, S(6)) =Ch(P~, S( —8)).

For any closed two-chain c which is invariant under
inversion, Ch(P~, c) =0. (4) If H(p) is a periodic nxn
matrix, P„ is the identity and so all its Chem numbers
vanish.

For the Hamiltonian of Eq. (1) the set of points of de-
generacy and their Chem numbers are given in Table I.
Because of (2) above only points in the half-cube with
0 ( (F3 ( zc are listed. For the three basic tori we find
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tive averaged conductance of the three-loop network of
Eq. (1).

Equation (3), which relates the Chem numbers with
the transport coefficients, is known to hold for the full
Schrodinger equation of the network. We shall now de-
scribe how to extend this to matrix Hamiltonians. We
shall consider here the case of matrix Hamiltonians

where the wave function sits on the bonds of the net-
work. The case where it sits on vertices is more compli-
cated and shall be dealt with elsewhere. ''

In a one-dimensional Schrodinger equation of a net-
work the wave function is +b (xt, ), 0 ( xt, ~ 1. The
coordinate xb is measured in the b direction. On b, +
solves the one-dimensional Schrodinger equation in a
gauge potential and therefore has the form

et, (x ) = [T(tlf+, y —) ] (x) = exp [iyt, (x ) ] [ ttf+(b )e xp (ik x) + y (b )exp ( —ikx ) ],

where yb(x)—:f A. yi(b) and y (b) denote the amplitudes of the forward- and backward-moving waves on the bond
b. The linear operator T is introduced for later purposes. A vertex with n, , edges connected to it is described by a uni-
tary n, , xn, , scattering matrix, S,„' which maps the incoming waves on the outgoing waves, S„%'„;„=y, , ,„,. %',, ;„i,„, are
n, , -dimensional vectors of complex numbers:

+,, ;„(b)=6(1,[t,b] ) y+ (b)exp[ik+i yb] +6( —1, [t', b]) y —(b),

@,, ,„,(b)—:6'(1, [t,b]) y (b)exp[ —ik+i yb]+6( —1, [t,b]) y+(b).

b runs over the n, , edges associated to t. . The unitarity of 5,, guarantees that current is conserved at each vertex.
A basic tool is this: Consider T:Ht H2, where Ht 2 are two Hilbert spaces (not necessarily of the same dimen-

sion). Let Q be an orthogonal projection on H2, and suppose that TT*Q =Q (T* denotes the adjoint of T) Suppose.
that QdT T* is smooth and globally defined. Then P= T*QT i—s a projection on H& and the Chem numbers for the
two projections coincide.

We apply this to Hi, the finite-dimensional complex vector space, and 02, the Hilbert space of functions. The map
T from C to L [0, 1] is given by Eq. (5). The scalar product in C, induced by the scalar product in L, has the
"Riemann metric" 2 where

2;f —=6l+ [(1 —67)/k]exp( —ikey) sin(k), i j =1,2.

e;~ is the completely antisyrnmetric tensor. The metric is independent of the gauge field and is nonsingular provided
k &0. One finds ' ' for d T T

[dy(x) +x dk]dx
dT* T =d(~ ')*~ —t (~ ')*

[d y(x ) +x dk ]exp (2ikx )dx

„[dy(x ) —x dk ]exp( —2ikx )dx

J [dy(x) —xdk]dx
(7)

y is linear in p, so that dy is independent of P. Q, k,
', and Q dT T* are all smooth in p provided no levels

cross and k does not vanish. This establishes the equali-
ty of the Chem numbers.

In summary, networks have quantized averaged con-
ductances which are nontrivial in networks with three or
more loops. The computation of Chem numbers for net-
work Hamiltonians with one-dimensional connecting
links reduces to the study of finite matrices. Finally,
homology provides a convenient and compact way of
presenting the conductance functions of networks.
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