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Density and Deceleration Limits in Tapered Free-Electron Lasers
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The competition between the bunching force of the ponderomotive potential and the repulsive force of
the self electrostatic potential in a tapered free-electron laser limits the beam density, the deceleration
rate due to tapering, and the local electric-field spatial exponentiation rate. The limit on the spatial ex-
ponentiation rate is below that predicted by linear theory at the transition from the Compton to Raman
regimes. Furthermore, this limit is independent of the form of the particle energy distribution function.
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The intrinsic efficiency of free-electron lasers with
constant wiggler parameters is limited to a few percent. '

The limitation results from the fact that the maximum
change in particle velocity is of the order of the trapping
velocity due to the ponderomotive potential which is
much smaller than the initial beam velocity. It has been
suggested that the efficiency can be enhanced by adia-
batic change of the wiggler parameters so as to gradually
slow down the ponderomotive wave and any particles
trapped in it. With proper tapering the efficiency can be
improved dramatically.

A fundamental limitation on this process is that the
ponderomotive well cannot be decelerated so rapidly that
particles spill over its sides, becoming untrapped.
This, in turn, imposes a minimum length on the interac-
tion region if a given efficiency is desired. In this Letter
it will be shown how this limit on deceleration rate de-
pends on particle density when the repulsive self-
electric-field force between particles is taken into ac-
count. In particular, for a given deceleration rate there
is a maximum density of particles that can be decelerat-
ed. Likewise, for a given density there is a maximum de-
celeration rate that can be achieved. Furthermore, the
combination of these limits sets an upper bound to the
spatial exponentiation rate of the high-frequency fields.

To determine these limits the equation describing the
axial motion of particles due to the combination of the
ponderomotive and electric forces is considered,

mypz —
q p(z)+ epcos(kz) —my) vp,

az az

where z+I v pdt is the axial position of a particle of rest
mass m and charge q, vo is the velocity of the pondero-
motive well, yp=(1 —v$/c ) ' is the relativistic factor
(for simplicity we assume that the contributions to yp
from perpendicular motion are negligible), and P is a po-
tential which generates the axial electric field.

The quantity so is the amplitude of the ponderomotive
potential,

8'y/Bz ' =4ttq (n n)— (2)

Equilibrium solutions to Eqs. (1) and (2) are now
sought. Particles satisfying Eq. (1) have a constant of
motion

e = (trt y$/2)z '+ spy(&),

where g =kz is a normalized distance, and y(g) is a di-
mensionless effective potential well,

where E, and B„are the radiation electric field and
wiggler magnetic field, respectively, and k =k„+k„
where k and k, are the wave numbers for the wiggler
and the radiation fields, respectively. The last term on
the right in Eq. (1) represents the inertial force due to
deceleration with vp =dv p/dt (0. In general, all the
quantities in the definition of eo depend on axial distance
down the interaction length. It is assumed that this
dependence is weak on the length scale of the beat wave
and that these quantities can be considered as constants
in what follows.

The potential p, which generates the axial electric
field, is a combination of the electrostatic potential and
the axial vector potential. Both electric and magnetic
perturbations are present because the charge perturba-
tions are moving with speed vp. The potential p satisfies
the modified Poisson equation,

y(ViP+ 8 p/Bz = —4ttqn

In general, both the axial and perpendicular derivatives
in the preceding are important. The case of relatively
thick beams satisfying y$/rg ((k will be considered
here. The opposite limit of a thin beam can be treated as
well and leads to similar conclusions. For a thick beam
the potential can be separated into two parts, p=p+p,
where p is independent of axial position z,

yjV& P = —4ttqn,

where n is the average density, and p is periodic in z with
period equal to that of the ponderomotive wave,

ep= —
q E,B /2ypmk„k, c, y(&) =qP(g)/ep cos( Qg, (3)

1987 The American Physical Society 211



VOLUME 58, NUMBER 3 PHYSICAL REVIEW LETTERS 19 JANUARY 1987

and

Q =pl y$ i
v p i /kep

measures the deceleration rate. The contribution of par-
ticles with energy e to the local density follows from

„t'2def e
( ) (4)

where f is the distribution function and the integral is
over those values of e corresponding to particles trapped
in the potential well soy.

If we adopt the previous normalizations for length and
potential, Eq. (2) yields a second-order nonlinear dif-
ferential equation for y(g),

d y/dg =cosg+ j—g(y),

where

ri =4rrq2n/k eo

measures the average density, and

rl(y) =4rrq 'n (y)/k 'eo

(5)

(6a)

(6b)

measures the local density. The boundary conditions
that are applied to y(() are that y(g)+a( is periodic in

g with period 2z.
A solution of Eq. (5) requires specification of the dis-

tribution function f(e). As an example, consider the
simple case where f is constant for those values of e cor-
responding to trapped particles and zero otherwise. In
this case

g y =@+X&( ) 4 i/for p(0
Ofor y~O

where g~ is a constant proportional to the constant dis-
tribution function.

A sample numerical solution to Eq. (5) for this case is

shown in Fig. 1, where the effective potential and the lo-
cal density are shown as functions of (. Particles are
trapped in regions of g where y (0. (Because the equa-
tions are unchanged by addition of a constant to p, one is

free to pick @=0at the local maximum on the right. )
The solution was obtained in the following way. The

value of g, and the location of the local maximum on the
right, (o [where y((o) = y'(go) =0], were specified.
Equation (5) was then integrated backwards in g for dif-
ferent values of q until one was found for which
y'(go —2x) =0. The corresponding value of a, the de-
celeration, was then determined from

a = [y(&p —2') —y(&p) ]/2n; (7)

This procedure was repeated for different values of go
and ri„and the resulting values of a and ri were plotted
against each other. This is shown in Fig. 2, where se-
quences of equilibria corresponding to values of
go=(0.9,0.8,0.7,0.6)m are plotted. For a given go an in-
crease in t), causes rl to increase and a to decrease.
However, there is a limit point for a and g. That is, as
g, is allowed to become arbitrarily large a and g tend to
constants depending only on go. This limit point can be
determined analytically and will be discussed shortly.

From the practical point of view, one is not free to
specify (o or ri, . Rather, one specifies the average densi-

ty, q, and deceleration rate, a. From Fig. 2 it is clear
that as long as the values of q and a are chosen to lie
below the curve joining the limiting points, an equilibri-
um with a specific go and ri, exists. For points above
this line no equilibrium exists with the given distribution.
Thus, this line limits deceleration and density.

The precise energy dependence of the distribution
function depends on the details of the way in which the
particles were trapped. It will now be shown, however,
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FIG. l. Effective potential, y, and density, 11, vs normalized
distance for the following parameters: (p 0.8x, a 0.271, and

11 0.299.

FIG. 2. Deceleration a vs average density j for gp-(0.9,
0.8, 0.7, and 0.6)x. The dashed curve is the limit obtained by
solving of Eqs. (7), (8), and (9).

212



VOLUME 58, NUMBER 3 PHYSICAL REVIEW LETTERS 19 JANUARY 1987

that the curve connecting the limit points is independent
of the details of the distribution function so long as it is
nonzero only for trapped particles.

The limit can be found by our noting that as one tries
to force more and more particles into the well (for exam-
ple, by increasing tI, ) the well becomes shallower. Thus,
if go and gl are the two points where ter(g) =0 and y is
only slightly negative between these two points then in
the limit of a vanishing well tir'(gi) =y'(go) =0. The
limiting value of rT is determined by the condition that
the second derivative of y at (=go be slightly negative,

rit = cos(p. (8)

The limiting value of a is then determined by the solving
of Eq. (5) in the region between gi and go

—2tr, where
tI(y) =0 (no trapped particles):

y(g) = —cosg+ rT1((
—g, ) 2/2

+sin(t ((—g1) +

cosset,

(9)

where the integration constants have been chosen so that
y((i) and y'(gt) vanish.

The quantity gt is determined by the boundary condi-
tion tir'(go —2tr) =0, and at follows from the value of
yr((o —2tr) by Eq. (7). The pairs at and rit can be calcu-
lated by hand and appear in Fig. 2, confirming the re-
sults of the numerical integration of Eq. (5). Thus, the
limiting curve applies to all distribution functions.

The assumptions made in obtaining these limiting
values can be made more rigorous by our solving Eq. (5)
asymptotically in the limit g, ~. The solution re-
quires consideration of three separate regions of g be-
tween gt and go. Two of these regions are boundary lay-
ers near ~il and go, respectively. The solutions in these
regions confirm the assertions that y'(gt) 0 and
tT+cosgo 0 as rl, ~. A detailed presentation of this
analysis will be deferred to a future publication.

It is reasonable to ask what would happen if a beam
with too high a current density were injected into the de-
vice. In this case only a fraction of the beam particles
would be trapped. The nontrapped particles would then
contribute to the density in Eq. (4). If one considers Eq.
(4) far enough down the interaction length, then the
nontrapped particles would have large values of e (here e
measures energy in the ponderomotive wave frame). Be-
cause of the large value of energy these particles would
produce a uniform density in z. In this case, Eq. (5)
remains valid provided ri is reinterpreted to be only the
density of trapped electrons.

To assess the importance of this density limit consider
the energy exchange between beam particles and the
wave fields. As the particles are slowed down they give
their energy to the field. Balancing the spatial rate of in-
crease of wave energy with that lost by particles one

&w

k~ vp

' 2

(10)

where 11 =q8 /mc is the cyclotron frequency in the
wiggler magnetic field. The product ag has a maximum
of 0.126 when a=0.409 and g =0.308. In practice one
would have to operate below this maximum. Thus, Eq.
(10) sets an upper (lower) limit on the rate of exponen-
tiation (number of wiggler periods) in a free-electron—
laser amplifier with tapering. It is interesting to note
that with atI =1, Eq. (10) is within a numerical factor
the same as obtained from a linear analysis in the high-
gain regime if one fixes the density to be at the transition
from the Compton to Raman regimes. This is easily in-
terpreted by our noting that at this transition the pon-
deromotive and electrostatic forces are equal (as they are
in the present nonlinear calculation). Apparently, in the
nonlinear regime the density cannot be pushed above this
point.

Equation (10) can also be used to evaluate the perfor-
mance of oscillators. If R is the power reflectivity of the
output end of the oscillator cavity then one requires

R exp(tcN) =1

in steady state where N is the number of wiggler periods.
In conclusion, the competition between the bunching

force of the ponderomotive potential and the repulsive
force of the self electrostatic potential in a tapered free-
electron laser limits the density, deceleration rate, and
electric field exponentiation rate. The maximum ex-
ponentiation rate possible depends only on beam velocity,
wiggler field strength, and wiggler period, and is in-
dependent of the particle energy distribution function.
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finds

c = —nmc yo =mnyJv p i vp i.t) & zd
tl 8 dh

Expressing i vo i
and n in terms of the dimensionless pa-

rameters g and a one then obtains x, the rate of ex-
ponentiation per wiggler period of the radiation field en-
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