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Beware of 46-Fold Symmetry: The Classification of Two-Dimensional Quasicrystallographic Lattices
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The problem of classifying two-dimensional lattices with N-fold rotational symmetry for arbitrary
(noncrystallographic) even IV is shown to be equivalent to a much-studied problem in algebraic number

theory. When translated into crystallographic language, the number-theoretic results establish that ex-

cept for 29 even numbers N there are two or more distinct lattices. The smallest N for which there is

more than a single lattice, however, is N =46. We list every N for which there is a unique lattice, and

give the numbers of distinct lattices for all N & 100.

PACS numbers: 61.50.Em, 61.55.Hg, 64.70.Pf

To describe the recently discovered quasicrystalline
icosahedral ' and decagonal phases of aluminum alloys
it is necessary to reexamine and extend some of the most
fundamental concepts of crystallography. In particular,
the most fundamental concept of all, the Bravais lattice,
which can be defined very economically as a discrete set
of vectors closed under addition and subtraction, can be
extended to the quasicrystalline case simply by deletion
of the word "discrete. " Only if one insists upon a
minimum distance between lattice points can one restrict
the rotational symmetries of Bravais lattices to twofold,
threefold, fourfold, or sixfold axes.

Real-space lattices without a minimum distance be-
tween lattice points cannot describe physical structures,
which are necessarily characterized by a minimum in-
teratomic separation. Reciprocal-space Bravais lattices
in this generalized sense, however, remain pertinent to
the description of quasicrystalline diA'raction patterns,
which are indeed characterized by sets of points dense in

k space.
If the classification of quasicrystals is approached

through their diflraction patterns, then a crucial first
step is the classification of generalized Bravais lattices.
Preliminary to this, in turn, is an understanding of the
possible two-dimensional generalized Bravais lattices
with N-fold rotational symmetry. We address here the
classification problem for such structures, making the
cautionary point that the "obvious" and simplest answer
is in general incorrect, although it is correct in all cases
that currently seem likely to be of physical interest.

We are interested in classifying structures of the fol-
lowing form: Let w be a vector in the plane, let R be a
rotation about the origin through 2tr/N (N ~ 3) and let
w~ =R w. By a two-dimensional generalized Bravais
lattice with N-fold symmetry, which we shall call for
short an "N lattice, "

we mean a-set Stv of vectors with
the following properties: (1) Sums and differences of

vectors in Stv are also in Stv. (2) S~ is invariant under a
rotation through 2tr/N: If v is in S~, then so is Rv. (3)
Every vector v in S~ can be expressed in the form

1V

v=yn w'',
m I

with integral n

Without Property 3 there would be infinitely many
distinct N-lat tices even in the crystallographic cases
N=4 or 6. The requirement 3 is equivalent to stipulat-
ing that the lattice should be integrally spanned [in the
sense of (I)] by the minimal number of vectors con-
sistent with the N-fold rotational symmetry —i.e., that
the N-lattices are the simplest possible structures with
Properties 1 and 2.

Property 1 requires that if w is in Stv, so is —w. Since
—w is the rotation of w through x, it follows that the ro-
tational symmetry of an N-lattice is always of even or-
der, and so it su%ces to restrict N to even integers ~ 4.

Two N-lattices are equivalent if they diff'er only by a
scale factor and/or rotation; two N-lattices are distinct if
they are not equivalent. Evidently the set of N-lattices
can be partitioned into classes of mutually equivalent
ones, such that members of different classes are distinct.

One simple N-lattice is the set Z~ of vectors v of the
form (1) for all integral n, which we shall call the
standard lattice. When N has the crystallographically
allowed values 4 or 6, it is easy to show that there is just
one class: All N-lattices are equivalent to the standard
lattice ZJv (which is just the square net for N=4 and the
triangular net for N=6). In the crystallographically
forbidden case of major interest in the description of the
quasicrystalline aluminum alloys, a rather lengthy argu-
ment establishes that all 10-lattices are equivalent to
Z IQ.

The question naturally arises whether this simple state
of affairs might persist for general N. Our argument
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that there are no nonstandard lattices for N=10 sheds
no light on this conjecture, exploiting detailed numerical
properties of cos(2tr/5). We shall answer the question

by mapping it onto a problem that has been subject to
intense scrutiny by the mathematicians.

To answer to whether a general N-lattice is equivalent
to Z~ for arbitrary N is this: Oi erwhelrningly no; but
for all practical purposes, yes Th.ere are only 29 even
values of N for which there is a single class of N-lattices;
but among these are all values of N up to including
,'V =44.

Thus, for example, possible structures with dodecago-
nal symmetry can be systematically analyzed in Fourier
space starting with the simple set of wave vectors (I) for
all integral n . It seems improbable that quasicrystals
will turn up with N ~ 46, but quasicrystals of any kind
seemed more than unlikely just a few years ago, and so
we give the complete list of the 29 N for which there is

just one type of N-lattice:

N =4,6, 8, . . . , 44; 48, 50, 54, 60, 66, 70, 84, and 90. (2)

The only cases in which there are just two classes of
N-lattices are N=56 and N=78. There are just three
classes only for N=46, 52, and 72. When there is not a
unique N-lattice, things can be rather bizarre. The num-
ber of classes (called the class number, b'av) for the
remaining even N below 100 are'

hs8 =9, h62 =9, h64 =17, h68 =32,

h74 37, hp6=19, h80 5, Age=121,

hg6 =211, h8g =55, h92 =201, h94 695,

h96 =32, h9g =43.

In general the situation is quite horrendous. Although
the number is finite for any N, '' even for as "reason-
able" a number as 128, there are 359057 distinct N-
lattices. There are more than a hundred million distinct
158-lattices, more than ten billion distinct 178-lattices,
and h~ grows astronomically as N gets still higher.

We have extracted these results from the mathematics
literature by noticing that the problem of classifying the
two-dimensional N-lattices is equivalent to a long-
standing problem in algebraic number theory, the solu-
tion of which (note the dates of Refs. 8 and 9) is still not
completely at hand. The tacit assumption that there is
only one class of N-lattices for general N was the only
fallacy in a sensational "proof" of Fermat's last theorem,
announced by Lame and avidly pursued by Cauchy in

1847. It was Kummer who discovered the multiplicity of
46-lattices, dashing cold water on these hopes. '

The link between N-lattices and algebraic number
theory emerges when the two-dimensional vectors are
viewed as complex numbers. In the complex plane we

The set of all rational linear combinations of these N
roots is called the cyclotomtc field Qv, and the set of all
integral linear combinations —i.e. , our standard lattice
Z~ —is called the integers of the cyclotomic field. We
shall call such "integers" g inte-gers, to distinguish them
from ordinary integers. '

Consider now some subset S~ of Z~ that is also an
N-lattice. Since it must be invariant under rotations
through 2tr/N, it is invariant under multiplication of
each of its elements by g or arbitrary powers of
S~ =j S~. Since S)v is, in addition, closed under sums
and differences, the product of any number in St, with

any arbitrary integral linear combination of powers of
|,—i.e. , with an arbitrary g-integer —will also be in S&.

Such a subset of Ztv (closed under sums and dif'-

ferences and containing the product of any of its
members with arbitrary members of ZJv) is called an
ideal The N. lattices ar-e just the ideal of Z&

Evidently if a is any g-integer, the set aZ& given by
multiplying every member of Zjv by a is an ideal. Such
ideals, which are simply rescaled (by the modulus of a)
and rotated (by the phase of a) versions of Z)v itself, are
called principal ideals. Thus every N-lattice being
equivalent to ZJv is the same as every ideal of Zz being
a principal ideal The v. alues of N quoted in (2) for
which there is a single N-lattice are just those for which
Z~ has only principal ideals.

More generally, when considered as sets of complex
numbers two N-lattices S)v and S~ will be equivalent(i) (2)

if there is a complex number z such that

S(2) S() ) (5)

In particular, if the g-integer a is in S~, then za =p(i)

must be a j-integer in S~~). Scaling both sides of (5) by
e, we then have

any ' = az Sg ' =pS)v' ', (6)

where a and p are both (-integers.
Ideals related by (6) are called equivalent ideals. '

Thus the number of distinct classes of reciprocal lattices
with N fold symmetry is t-he number of distinct classes
of equivalent ideals in Z)v. This number, htv, is called
the class number of the cyclotomic field Q)v, and has
been and continues to be the object of much cornputa-
tional eAort.

Mathematical interest seems more focused on comput-
ing the class numbers than explicitly constructing non-
principal ideals when h ) 1, but we have extracted from
the literature the historically important specimen that
established that N =46 is the first nontrivial case.
Washington ' shows that when p = —,

' (I + 4 —23) the
set of all g-integral linear combinations of 2 and p (i.e.,

the direct sum of 2Z46 and pZ46) is a nonprincipal ideal,

can take the N vectors w to be the Nth roots of unity:

(4)
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and therefore cannot be equivalent to Zlv. To extract from this a description of a nonstandard 46-lattice it is necessary
to express P as an integral linear combination of powers of &~=e 'i . We have

p (10+(14+g20+ (22+ g28+ (30+ (34+ g38+ g40+ g42+ g44

which can easily be checked numerically, or given an ele-
mentary analytical proof' (which, however, this paper is

too short to contain. )
Viewed as an %-lattice, the resulting structure can be

described as a decoration' of the scaled standard lattice
2Z~, with a basis consisting of the set of vectors given by
all the integral linear combinations of the vector (7) and
its 45 rotations through multiples of 2'/46, with co-
efficients taken modulo 2. One can verify that modulo 2
there are just eleven such linearly independent vectors,
and so the basis contains 2" —

1 =2047 =89x 23
nonzero vectors. We stress that this strange structure,
like the decorations of the simple cubic lattice giving
face-centered and body-centered cubic, yields a lattice—a set of points that looks the same regardless of which
point it is vie~ed from —even though the size of the basis
is rather larger than what one has come to expect from
the crystallographic examples.

The other nonprincipal ideal of Z46 (there are two,
since h46 =3) is the direct sum of 2Z46 and P*Z46. Since
complex conjugation is just a mirroring in the x axis, the
two nonstandard lattices for N=46 are, surprisingly, an
enantiomorphic pair. (In the crystallographic case such
pairs can be found among the three-dimensional space
groups, but not even among the space groups in two di-
mensions. )

It is important for the development of a general quasi-
crystallographic classification scheme to realize that
there are values of N (all but a finite number) for which
there are nonstandard N-lattices that are not simply
scaled and rotated versions of the obvious one, Zjv. At
the same time, it may some day prove useful to know
those noncrystallographic values of N [Eq. (2)] other
than 10 for which all lattices are equivalent to Z~.

It is splendid and remarkable that this enormous but
(for physicists) arcane branch of number theory, de-
veloped in an eA'ort to prove Fermat's last theorem,
should contain precisely the structures needed to formu-
late and answer one of the most fundamental crystallo-
graphic questions raised by the discovery of quasicrys-
tals.
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