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The mathematical structure of the dynamical theory for the soft-spin version of the p-spin—interaction
(p > 2) spin-glass model is related to that for the dynamical theories of the structural glass transition.
The phase transitions predicted by both theories are discussed. The spin-glass transition predicted by the
dynamical theory is related to a broken-replica-symmetry equilibrium calculation.
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A model Hamiltonian (or an effective Lagrangean)
that is capable of describing relaxation processes in su-
percooled liquids and glasses has been difficult to obtain.
In a recent paper! it was suggested that there may be a
close connection between the dynamical theories?™’7 of
the structural glass transition and exotic mean-field
spin-glass models such as the Potts glass®!'' or spin
models with p-spin interactions'? (p >2). The motiva-
tion for this observation was the discontinuous nature of
the transition in all three models.

In this Letter this connection is made more precise. In
particular, it is shown that in the ergodic phase (above
the transition temperature T,) the dynamical equations
for spin fluctuations in the soft version of the mean-field
p-spin-interaction (p > 2) model are similar to Leut-
heusser’s“ equation for the structural glass problem. The
mode-coupling approximation used to obtain an equation
of motion for density fluctuations in the structural glass
problem is expected to become exact as the dimensionali-
ty tends to infinity.! The mean-field dynamical equation
satisfied by the spin fluctuations for the model proposed
here is also exact when the number of spins tends to
infinity. Thus the structure of the dynamical equations
for the appropriate correlation functions of both the
models should be viewed as identical only in the mean-
field limit. Although this connection may at first seem
surprising, it is in retrospect quite obvious. First, Leu-
theusser neglects wave-number dependence in his model.
This is analogous to the use of an infinite-range mean-
field Hamiltonian in the spin-glass (SG) problem.
Second, the nonlinearities in the dynamical equations for
the soft-three-spin-interaction model are identical in
structure to the nonlinearities in the fluid dynamical
equations>!? that lead to Leutheusser’s model.

Once this connection is established we discuss the
phase transition predicted by these dynamical equations.
In particular, for the spin model we relate the dynamical
transition, which predicts critical slowing down as the
glass transition temperature, Ty, is approached from the
ergodic side, to a broken-replica-symmetry equilibrium
calculation.'®!S It is important to note that a replica-
symmetric (RS) solution with finite g for this model is
unstable for all 7, and cannot be used to locate the tran-
sition temperature. This is unlike the usual Sherring-
ton-Kirkpatrick (SK) model'® where RS solutions can be
used to locate T,. The essential difference is due to the
discontinuous nature of the phase transition in this mod-
el. In this paper only results are quoted. More details
will be given elsewhere. !’

We start with the Hamiltonian, H, for the soft-spin
version of the mean-field p-spin model (=7 "1"),

’
BH=Y, —z(la,z-i-uo,f‘

=B Jiyiy0i, - oi, (1)

with —oo < g; <oo. The strength of interactions'?
{Jir--i,,} are taken to be independent Gaussian random
variables with variance (N =number of spins) ~J?%/
NP1 The relaxational dynamics for o;(¢) is assumed
to be given by the Langevin equation, '8-20

o '8,0:(t)=—6(BH)/80,;(t)+& (1), )

with &; the usual Gaussian noise term and I'g the bare ki-
netic coefficient.

By use of standard field-theory techniques'®-?° the
average over the J;,.. i, €an be carried out. The resulting
dynamical equations for NV — oo are!’

6:(0) =Go(@) fi (@) = 4uGo(w) [ L2225 () 01(w2) 03 (0 — 01 = w2), (3a)

dwldwz
)
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with Go(w) a renormalized bare propagator,

Gy " (w)=ro—iwly ' — L(le)BZJZJ; dire'G ()P~ 2(1),

and f;(w) a renormalized noise term,

filo)filw) =275(w+ ")

In Egs. (3), C(t) and G(1) are the average spin-
correlation function and response function, respectively.
Causality yields the relation, G(1)=—0()C(t), with
6(t+>0)=1 and 6 <0) =0.

We treat the « terms in Eq. (3a) in the one-loop or
mean-field approximation. We discuss this approxima-
tion further below. An important consequence of this
approximation is that this treatment of the SG transition
is restricted to models with p =2+ € with ¢ small (an an-
alytic continuation to fractional p values is assumed).
We will, however, be able to draw some general con-
clusions. It is also important to point out that the insta-
bility?!?2 usually associated with RS breaking is an
0(u?) effect in the p-spin (p > 2) model and it is a tech-
nicality (cf. below) that prevents us from treating the
general p model within a small u approximation. An
equation for C(w) (Imw>0), the one-sided Fourier
transform of C(z), can be derived from Eq. (3b) and
causality. In the ergodic phase we obtain

Clw)=Clt=0)[—io+r ()],
with 4 =+ pB2J? and
Ct=0)=ry !
=lro—uC? 't=0)+12uC(t=0)]1"".

I'(w) is a renormalized kinetic coefficient,

l"—l(w)=l"0_l+yj; dr e Cr=1(p). ()

For p=3 these equations are mathematically identical
to the dynamical equations for the structural glass prob-
lem.?”7 We argue below that these equations have simi-
lar properties for any p > 2. The equation for C(r=0) is
an additional equation in the SG problem that self-
consistently determines the equal-time spin correlations.
If we assume, as is effectively done in the structural glass
problem, that C(t=0) is continuous at T,, then these
equations predict a glass transition at T=T,, and a con-
tinuous slowing down as T, is approached. The critical
parameters are!” (J =1 from now on)

e =ro lp—1)/(p—2)1P"2(p—1),
(%)
ge=1im C(O) | r=1,=(p—2)/Foc(p— 1) =qEa,

{— oo
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and as T— T, T(0)~|T—T,|'7%. Note that the
order parameter describing this phase transition, gga
=Edwards-Anderson parameter, is discontinuous at T,
unlike in the SK (p=2) model. The strength of the
discontinuity is of O(e=p—2) for small €. u, in the
equation for C(r=0) gives an equation for 7o, which
determines T, since uC~Tg_2. The 7o, equation has a
physical solution only for sufficiently small ¢ which im-
plies that for e~ 1 higher-order u terms in 7o, are needed
to correctly describe the SG transition.

We next relate the above transition to an equilibrium
phase transition. First note that the crucial assumption
used above, and in the structural glass theories, is that
C(t=0) is continuous at T,. Although for any glass
transition this seems physically well motivated, it is not
clear that it is consistent with the underlying statistical
mechanics of the model. In particular, it is straightfor-
ward to verify2%?2 that if we also require Eq. (3a) to be
valid at T, [this equation was not used in obtaining Egs.
(5)] then a continuous C(z=0) at any critical tempera-
ture, Ty, is not consistent. Further, one can show!” that
if all of Egs. (3) are satisfied at Ty, then the resulting
description of a possible phase transition is identical to
the RS equilibrium solution for the soft-spin version of
Eq. (1). The RS solution is unstable everywhere, unlike
in the p=2 model where the Almeida-Thouless line
divides the region of stability. However, if one examines
the possible phase transition associated with this model,
then one finds that an ordered or SG phase is always un-
stable. The assumption that C(r=0) is continuous at T
is shown by the use of the broken-replica-symmetric
solution.

So far we have shown that the dynamical equations
predict a phase transition at T, given by Egs. (5) and
that there is a continuous slowing down as T-—Tg'.
However, this critical temperature is not related to the
RS equilibrium solution of this model. This suggests
that one has to break replica symmetry to obtain a tran-
sition temperature that is related to the one predicted by
the dynamical theory. To show the connection with the
equilibrium theory we have used the Parisi Ansatz to ob-
tain the free energy'®!'S for the soft-p-spin model.
Motivated by previous work'"!? on the Potts glass and
the p — o model we use only one RS breaking. The or-
der to which we work additional replica breakings seems
to be irrelevant.!” It is also convenient to consider small
€ so that an order-parameter g ~O(¢) expansion is pos-
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sible. With this the Parisi free energy is given by

2 2.p
%=—¥+ASC—InAO+(I-—m)[%q——%

where Cy=A,/Aq with
A, =fdoc"exp[ — L (ro—205)0% —uc’l.

CZ
+(1—m)T°x’-

g’ Cor?

—(1—m) - —m)2—06-—+0(k4), (6a)

(6b)

Here C is related to the equal-time spin-correlation function and m =m, and ¢ =q, are the usual Parisi order parame-

ters. We have also anticipated that'>!7

mo=go=0. A, and A =1, are Lagrange multipliers'? related to C and g which

have been introduced to carry out spin integrals in the mean-field limit. The saddle-point solution of Eq. (6a) yields

(note that m =0 corresponds to the RS solution)
1 =Cdug” > —Ciu’q?* (2 —m),

3—=2p

l—m=

Ciu’ p 4! 6

The critical temperature, T,, is obtained when these
equations first have a physical solution, ¢ >0, 1 —m > 0.
At criticality m =1 and Eq. (7a) reduces (to the order in
€ in which it is valid) to the equation of state that follows
from the dynamical theory. However, at T,, Eq. (7b)
must also be satisfied and this additional equation leads
to Ty < Ty, with T, the transition temperature according
to the dynamical theory. We discuss this point further
below. The solving (cf. discussion remark 4 below) of
Egs. (7) leads to a SG phase with Fsg> Fpym for
T <Tg. At Ty there is no latent heat and the specific
heat is discontinuous. This SG phase is stable according
to a local-replica-based stability analysis. We conclude
that for T close to Ty and for small € this SG phase is
the correct one on the basis of equilibrium theory. From
our analysis it also follows that the equal-time spin
correlations are continuous at the glass-transition tem-
perature. This is in accord with the dynamical analysis.

We conclude with a few remarks.

(1) An important aspect of this paper is to point out
that the dynamical theories for this class of models ap-
parently lead to a T, that is greater than that predicted
by the equilibrium theory. According to the static solu-
tion T, would correspond to a saddle point of F which is
a maximum as a function of g but not of m. Physically,
we interpret the dynamical SG phase as a phase where
Fsg(g,m) is maximized with m=1 in the region T,
>T>Tg At Ty there is a second SG transition
specified by Eqgs. (7). The requirement that m=1 at T,
is equivalent to the requirement that the paramagnetic
and SG free energies be equal at T,. It is also interest-
ing to point out that a local-replica-based stability
analysis leads to a marginally stable SG phase at 7.

Technically the behavior of the dynamical theory is
easy to understand. For T > T, the dynamical equation
for g. given by Egs. (5) has the trivial solution and un-
physical complex solutions. At 7, two of the complex

2 203
L__E_FE_C_E p—2_H COqZp—3 .

(7a)

(7b)

solutions become degenerate real solutions. At T there
are three real critical points of the dynamical equation
that satisfy x., =0 < x., <x,,=¢. < C(=0), with x,
and g, stable fixed points and x., an unstable fixed point.
We then have a situation where C(t— o)=0 and
C(t— o) =g, are both stable solutions but where it is
impossible to reach C(z— o) =0 because of the inter-
vening unstable fixed point. [The only possible con-
clusion is that the system freezes into a SG state because
it cannot reach the equilibrium state defined by
C(t— 00)=0.] It is also interesting to point out that in
the SK model the situation is quite different. The
dynamical equation has only two fixed points and at T,
there is an exchange of stability between the fixed points.

(2) In the SG problem the effects of frustration are
not obvious after averaging over the random interactions.
The dynamical theories for the structural glass problem
do not have frustration in them. From this one can con-
clude that in the SG model, frustration is not important
in the ergodic phase. What is crucial in causing critical
slowing down as T, is approached from above is the non-
linearity in the dynamical equations. Below Ty, frustra-
tion effects should be important and the simple dynami-
cal model presented here is not sophisticated enough to
reflect this. It has been argued that for SG below T, re-
plica methods are also needed in dynamical theories to
correctly account for frustration effects.?> The analo-
gous argument for the structural glass problem is not
clear although the ideas presented by Sompolinsky?* in
the context of the SK model may be relevant.

(3) The ideas given above allow us to speculate on the
nature and the meaning of the dynamical theories of the
structural glass theories.?~7 It seems clear' that they are
basically mean-field theories. In addition, frustration?’
leads to many equivalent stable and metastable free-
energy states. In this mean-field model the free-energy
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barrier between possible nonergodic phases are infinite
and a true ergodic-to-nonergodic phase transition occurs.
In a real glass there is no true transition and one expects
finite barriers between the possible free-energy states.
The transitions between states will lead to the extremely
slow transport observed in real viscous liquids. !-2

(4) We have also examined the Ising limit (¢?=1) of
Eq. (1), which is obtained from the soft-spin Hamiltoni-
an by letting ro— — oo, u— oo with u/ro— const. For
the p =2+ ¢ model, ¢ 1, the SG transition is identical
in structure [in Egs. (7), Cy is replaced by unity] to that
for the soft model if T is close to Tg. Near T, one ob-
tains g =73 (e+1), 1 —m=t/e, t=1—T/Ty, and (T;)?
=1+4+¢€ln$ e—e. At lower temperatures the O(A{) term
in Eq. (6a) becomes relevant and a more complicated
Parisi order parameter becomes possible. This may
reflect another SG transition at lower temperatures as in
the Potts glass model. !!
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