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From Cascade to Spike— a Fractal-Geometry Approach
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The fractal nature of collisional cascades in solids is investigated by means of a model of “idealized”
collisional cascade and the Winterbon-Sigmund-Sanders theory of atomic collisions. It is shown that the
fractal dimensionality increases as the cascade evolves because of the change of the effective interaction
potential. The condition of a spike is shown to arise naturally from the concept of “space-filling” frac-
tals. The characteristic kinetic energy per particle in a spike is estimated to be on the order of a few

electronvolts.

PACS numbers: 61.80.Jh, 05.40.+j, 34.10.+x

Cascades and spikes are two concepts frequently used
in describing ion-solid interactions.’> As an energetic
ion penetrates a solid, it transfers part of its energy by
colliding with target atoms. These atoms recoil and col-
lide with other atoms, resulting in higher generations of
collisions. The later-generation collisions produce many
low-energy recoils which induce small displacements in
random directions. The successive generations of the
collisional process form a collisional cascade.! A spike
or a high-density cascade has been frequently described
as a limited volume with the majority of atoms tem-
porarily in motion as a result of collisions.? A thermal
spike is a spike in which the velocity distribution of mov-
ing particles resembles the Maxwell-Boltzmann distribu-
tion. The concept of temperature can then be introduced
locally by the law of equipartition.

Cascade and thermal-spike models have been applied
to radiation-damage problems, "2 such as creation of de-
fects, sputtering, and, more recently, ion implantation
and ion-beam mixing.> However, questions still remain
as to what a spike is and, in particular, how a cascade
evolves into a spike. In this Letter, we shall show that
the notion of fractal dimensionality, introduced by Man-
delbrot,* provides a natural framework for the study of
these problems. The idea of fractal dimension has had
an impact on a series of problems ranging from coastline
geometry, to disordered materials, to galaxy forma-
tion.* It has also been recognized that the idea of frac-
tals might be of interest to atomic collisions in solids.®

In Fig. 1, we plot “‘trees” that are similar to those in
Ref. 4. The trees have infinitely thin stems, and the
same angle 6 =0;+6, between the branches at every
branching point. For each tree, the length ratio between
the successive branches, y, is fixed throughout, and the
fractal dimension is D =In2/In(1/y).* In Figs. 1(a) and
(b), D has values 1 and 2, respectively. Trees with larger
values of D are more ‘‘space-filling” than trees with
smaller D.*

A natural connection between a tree and a collisional
cascade is established if each branching point of a tree is
taken to represent a binary collision event, and each

branch corresponds to a trajectory between collisions.

In real collisional cascades, as well as computer-
generated ones,’ the scattering angle and the distance
traveled between collisions may be considered stochastic.

FIG. 1. Fractal trees (solid branches) with (a) y=1%, so
that D=1, and (b) y=(5)"2 so that D=2. They also
represent the idealized collisional cascades (a) for V(r)ar ~2,
and (b) for V(r)ecr ™% The cascades (trees) must be ter-
minated in the two cases when the mean free path (branch
length) approaches the same predetermined shortest length
scale. In the D=2 case, (b), only one section of the *“plane-

filling” cascade (tree) is shown.

© 1987 The American Physical Society 2083



VOLUME 58, NUMBER 20

PHYSICAL REVIEW LETTERS

18 MAY 1987

Consequently, useful information can only be obtained
from statistical averages. It is, therefore, instructive to
construct a cascade in which the scattering angle and the
distance traveled between collisions at each generation
take their average values. This idealization of cascades
is in the same spirit as Mandelbrot’s treatment of the
coastline problem in which an irregular coastline is first
approximated by a Koch curve.*

To construct an idealized collisional cascade, we begin
with the hard-sphere collision approximation in conjunc-
tion with inverse-power potential ¥ (r)er =™ where r
is the internuclear distance and 0=m < 1.%° In the
study of collisions with large scattering angle and large
momentum and energy transfer, this procedure has often
been used as a convenient starting point.>'® Later we
shall show that the result of this analysis is general and
is not limited to the hard-sphere collision approximation.
Consider a system made of identical particles. At each
energy concerned, the radius of the particles is defined as
half of the distance of closest possible approach py when
the impact parameter for binary collisions is 0 and the
scattering angle ¢ in the center-of-mass (c.m.) coordi-
nate system is n. For that case, the potential energy V at
po is given by’

V(p0)=;“E0, (l)

where Eo is the incident particle kinetic energy in the
laboratory coordinate system (LC). Equation (1)

defines po. Following the derivation in Ref. 9, the
differential and total cross sections are given by
do=rnp¢dE \/Eo, (2a)
and
o=nrpg, (2b)

where E| is the kinetic energy of the recoil particle in
laboratory coordinates. The mean recoil energy E| is
given by £, =+ E;. We can generalize this result to the
nth generation of collisions, i.e.,

E,=+E.-\ 3)

From Eq. (3), we obtain the average scattering angle in
the c.m. system, ¢ = + 7. In the LC system, the average
scattering angles become 6; =0, = I

The mean free path of the nth generation is given by
An=1/No,, where N is the atomic density. For inverse-
power potentials, V(r)=Gr —'/’", with G a constant
which depends on m, and 0 < m < 1, the total effective
cross section!! o, equals 7(2G/E,)?™, according to Egs.
(1) and (2b). We obtain

Ao =/Nz)(E,/2G)*™
=) /Nr)(E,—1/2G) >
=(;_)2m}"n_|v (4)
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where we have used Eq. (3). The mean free path ratio,
y=An/hn—1=2"2" is independent of n, the generation
of the cascade. The collisional cascade generated by
y=2 72" and the mean scattering angle 6= } r is there-
fore self-similar and has a fractal dimension

In2 1

In(1/y) 2m’ (5)
Thus, within the approximation used here, the fractal
dimensionality of a cascade depends explicitly on the
type of interatomic potential encountered. For the
inverse-square potential m =% we have a cascade of
fractal dimension 1. For the inverse-power potential
with m = ¢, we have a cascade of fractal dimension 3,
which equals the physical dimension of the space in
which an actual collisional cascade is embedded. For
+ <m=1,1>D= % from Eq. (5). This is the case of
“subfractal trees”* and D is then necessarily 1 which is
the topological dimension of a branching tree (see Ref.
4, pp. 152-153). In particular, D=1 for Rutherford
scattering (m =1). As examples, idealized collisional
cascades for V(r)ecr "% and V(r)ecr ~* are those trees
shown in Fig. 1.

A “‘spike” is, as has been frequently described, a /imi:-
ed volume with the majority of atoms temporarily in
motion.? This spike condition is ambiguous because the
terms ‘‘limited volume” and ‘“majority”’ cannot be
uniquely defined for a treelike structure (see Fig. 1).
Thus, the density of moving particles cannot be defined
without further assumptions. Such difficulties as specify-
ing the cascade volume have been recognized by Sig-
mund.'? To circumvent these difficulties, we propose an
alternative approach to the spike condition by applying a
well-defined concept of space-filling fractals* A fractal
is space filling when its fractal dimension D equals the
physical dimension £ of the space in which it is embed-
ded.

This space-filling condition is illustrated in the follow-
ing for the case of idealized collisional cascades. We
first identify the shortest length scale to be the shortest
mean free path A; and equate this to the interatomic
spacing a, i.e., Ag=a. Likewise, we take the longest
length scale to be the longest mean free path 19 (> 2,).
For an idealized collisional cascade of dimension D
=1In2/In(1/y) the total number of generations of cas-
cades required to reduce the mean free path from Ay to
Ag is given by

In(Ag/%0)
— Ints/%0) 6)
Iny
and the total number of displaced atoms NV, is given by
N =28=(no/Ag) " (7)

An upper bound L for the linear dimension of the cas-
cade can be obtained by summing up the series: Y f_oA;
=¥72hi=ro/(1—y); thus, L=xo/(1—y). Let us
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suppose that the cascade is embedded in a physical space
of dimension E. The total number of lattice points N,
included in the volume defined by an FE-dimensional
sphere of radius L can be calculated. We find

Na =L/ E=Oo/r)EL1/(1 = p)1E (®)

The ratio n=N./N, between the total number of dis-
placed atoms and the total number of lattice atoms in
the E-dimensional sphere of radius L can be calculated
from Egs. (7) and (8). In the limit as Ao— oo, this ratio
becomes

D—FE .
. Ao o Up1E_ 1% ifD=F,
”“M}'E“w[‘{;] =2""21"=00, itp<E

9)

This confirms that D =F is indeed a critical dimension
for a space-filling collisional cascade.

Next, we point out that the notion of a dimensionality
D=1/2m for collisional cascades governed by an
inverse-power potential V(r)er =™ is inherent in the
Winterbon-Sigmund-Sanders (WSS) theory of collision-
al cascade.'> From the WSS theory (which is formulat-
ed in three-dimensional physical space), the characteris-
tic length scale (e.g., ion range) R of a collisional cas-
cade scales with the incident ion energy E and is given
byl3

R=E§"/NChp, (10)

where C,, is a constant for fixed m. With a Kinchin-
Pease type of argument,"!'* the number of displaced
atoms /V, is given by

N, R (1)

From the equivalent definitions of fractal dimension,*?

we recognize that Eq. (11) is just another manifestation
of the fractal nature of the underlying collisional cascade
with the same fractal dimension D =1/2m obtained from
the idealized cascade approach [Eq. (5)]. Similarly to
the discussion leading to Eq. (9), we examine the ratio n
between the displaced atoms to the lattice atoms:

« lim RP = =1 D=3, (12)
e M, 0, if D <3.

Thus, D=3 is again shown to be the critical dimension
of a space-filling collisional cascade. Conclusion 1: A
collisional cascade governed by the inverse-power po-
tential V(r)er =™ (0=m=<1) is a fractal with a
fractal dimension D=1/2m for 0<m < 5 and D=1
for ¥ <m=<1. In three-dimensional space, a space-
filling collisional cascade occurs when 0 <m < ¢.

As an actual collisional cascade evolves in time, the
characteristic kinetic energy of atoms or ions changes
from the primary incident ion energy, which is typically
on the order of several hundred kiloelectronvolts in most

of the ion-mixing or ion-implantation experiments, to the
electronvolt energy range. Inverse-power potentials
V(r)er ~'m with 0 <m < 1, have been frequently uti-
lized to model collisional dynamics.8 For example, it has
been argued that over a major portion of the kiloelec-
tronvolt range and for medium- to heavy-mass ions and
atoms, the inverse-square potential (i.e., m = %) is a fair
approximation, while in the lower kiloelectronvolt and
upper electronvolt region, m = ¥ should be adequate. In
the electronvolt region, m may be taken close to zero.®
To describe an actual collisional cascade from beginning
to end by the inverse-power potential, decreasing values
of 0=m <+ must be used. The actual cascade is,
therefore, not a fractal in the sense which has been given
so far, but is a nonuniform fractal* with a variable
dimensionality which increases from its initial dimen-
sionality 1 (i.e., m=1%). Conclusion 2: In an actual
collisional cascade, the fractal dimensionality increases
as the cascade evolves because of the change of the in-
teraction potential.

From the analysis of space-filling collisional cascades,
it is appropriate to postulate that, in three-dimensional
space, a transition from cascade to spike occurs when the
fractal dimension of a collisional cascade D equals 3.
The condition D =3 implies m = ¢. This corresponds to
a potential ¥ (r)er ~% which is, according to the previ-
ous discussions, applicable to particles of a characteristic
kinetic energy in the ‘“‘upper electronvolt to electronvolt
range.® Conclusion 3: In three-dimensional space, a
spike, or a “space-filling’’ cascade, occurs at a charac-
teristic particle kinetic energy on the order of a few
electronvolts per particle.

Recently, there have been reports that spikes indeed
occur at an energy level of about a few electronvolts per
particle.>'* In ion-mixing experiments, it was shown
that thermal-spike effects, such as the chemically biased
diffusion due to the heat of mixing of a binary alloy,
occur at a characteristic kinetic energy level of about an
electronvolt per particle. In a computer simulation,'? it
was observed that the equipartition of kinetic and poten-
tial energy of moving particles occurs in about the
electronvolt-per-particle range, thus indicating the ap-
proach to thermal equilibrium within the cascade at this
characteristic energy. These findings are consistent with
the above conclusion 3. In addition, the numerical value
of the present estimate for the energy density of spikes
falls between the values obtained by Sigmund.'? The
latter values are based on the estimates of the spike
volume. This procedure, as Sigmund pointed out, “is not
easily specified both in principle and in practice.”!?
Conclusion 3 above, however, is reached without specific
assumptions regarding the measure of the cascade
volume.

We have examined the fractal nature of collisional
cascades by studying the idealized collisional cascade
and the WSS theory. Either approach enables us to es-
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tablish a fractal dimension for cascades governed by the
inverse-power potential. The idealized collisional-
cascade approach shows, at the level of binary-collision
events, the scaling property of the mean free path [Eq.
(4)] from which the fractal dimensionality results. The
approach based on the WSS theory has the advantage of
not relying on assumptions such as the hard-sphere col-
lision approximation, though the underlying feature
which gives rise to the fractal dimension is obscured.
The fact that both approaches give the same result sug-
gests that the two methods are complementary to each
other and the conclusions drawn from either approach
are of general nature. In summary, we have shown that
in actual collisional cascades the fractal dimensionality
of the branching process increases as the cascade evolves
because of the change of the interaction potential with
energy; a spike occurs when the fractal dimension of the
cascade equals the physical dimension of the solid and
this corresponds to an energy scale of a few electronvolts
per particle.
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