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Factorization of the Triplet Direct Correlation Function in Dense Finjds
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A factorization Ansatz for the three-particle direct correlation function c is combined with the ex-
act relation between c and the pair function c to derive a simple and tractable approximation for
c in dense, classical fluids. The predictions compare favorably with "exact" molecular-dynamics re-
sults for the "soft-sphere" fluid near freezing.

PACS numbers: 61.20.—p, 05.20.—y

The n-particle direct correlation functions (DCF)
c " (r(, . . . , r„) are key ingredients in the density-
functional theory of inhomogeneous classical Auids'
and of freezing. They are the functional derivatives of
the excess (nonideal) part of the Helmholtz free energy
F,„(p ' ] (the generating functional), with respect to the
one-particle density p(')(r), according to

PnPF [ (()]

where P =1/kBT. Expansions of inhomogeneous Auid or
crystal properties around a uniform reference state are
almost invariably limited to second order, involving the
well-known uniform Ornstein-Zernike DCF c (r) (r
=r( —r2), because very little is known about higher-
order DCF's c " (n ~ 3), in particular about the triplet
function c )(r, r') of a uniform fiuid. The purpose of
this Letter is to present a new, systematic procedure for
the calculation of c, and to compare the predictions of
this theory with the results of extensive molecular-

dynamics (MD) simulations.
The standard approximation schemes for triplet corre-

lations in dense Auids generally focus on the three-
particle distribution function g (r, r'), rather than on
c . The Kirkwood superposition approximation
amounts to setting

g (3)(r r ) g (2)(r)g (2)(» )g (2)(!r r ! ) (2)

where g denotes the usual pair distribution function.
The convolution approximation assumes a similar fac-
torization, but in k space, i.e. ,

S"'(k,k') =S"'(k)S"'(k')S"'(!k+k'! ), (3)

where the two- and three-particle structure factors
S (k) and S (k, k') are Fourier transforms of the dis-
tribution functions g and g . The superposition ap-
proximation (2) and its improvements are not well
adapted to derivation of transparent expressions for the
DCF c ( ). The Fourier transform c (k, k') of the latter
is related to the structure factor 5 by the triplet
Ornstein-Zernike relation

S ' (k, k') =S (k)S' (k')S (!k+k'! )[1+p'c(k,k')], (4)

where p is the number density. Comparison with Eq. (3)
immediately shows that within the convolution approxi-
mation, c =0. The first correction to the convolution
result, in an h -bond [where h =g( —I] expansion
of c, is given by

c (r r') =h (r)h (r')h (!r —r'! ). (5)

This approximate expression has in fact been recently
used to evaluate the third-order contributions to the free
energy of the crystal phase in a density-functional calcu-
lation of freezing of the classical one-component plas-
ma. 'o Equation (5) has the undesirable property that it
leads to c( (r, r') = —1, independently of density, for all
triangles such that r, r', and ! r —r'! are less than the
range a of the repulsion between atoms, where h(r)

We have maintained the factorization assumption,
corresponding to a procedure of separation of variables
(r, r', and ! r —r'! ) which satisfies the obvious symme-
try properties of c . However, we replace h in Eq.

=t(r)g d'r't(r')t(! r —r'! ). (7)

Given a means of calculating the Ornstein-Zernike DCF
c and its variation with density, Eq. (7) uniquely
determines t(r) and hence c ( ) from Eq. (6). The nature
of the constraint (7) is more transparent in Fourier space

! (5) by an arbitrary function t(r), so that our basic ex-
pression for c now reads

c (r, r') =t(r)t(r')t(! r —r'! ).

Once the factorized form (6) has been assumed, the op-
timum choice for t(r) is made by our requirin~ that it
satisfy the exact relation between c(2) and c(3, which
follows immediately from Eq. (1) in the limit of a homo-
geneous fluid'' [p ' (r) =pl:
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where it reads

t) "'(k)/t)p="" (k, k'=0)

This shows that the factorization (6) together with Eq.
(7) ensures that the resulting c (k, k') is exact whenev-

er one of the two wave vectors vanishes. For arbitrary
wave vectors k and k', c is given by

."'(k,k')

J"d'k "t(k")«Ik —k" I)«Ik'+k"
I ), (9)

(2tr) '

which can be evaluated by a standard expansion in
Le endre polynomials. In practical applications,
c (r) may be calculated with a high degree of accura-
cy, for a given interatomic pair potential t (r), from one
of the self-consistent integral equations recently pro-
posed in the literature. ' ' These integral equations
supplement the two-particle Ornstein-Zernike relation

S"'(k) = [i —pc"'(I )1 (io)
by an appropriate closure relation between g (r),
c (r), and t (r); they can be solved simultaneously, by
numerical iteration, for the functions c (r), h )(r),
and their density derivatives C~(r) =t)c (r)/&p and
H~(r) =rib (r)/&p. The resulting C~(r) is substituted
in Eq. (7) which is then solved numerically. The
straightforward iterative Picard method,

t„+)(r) =cp(r)/(t„*r„)(r),

~here the asterisk denotes a convolution product, leads
to difficulties whenever the convolution of the nth itera-
tion estimate t„has zeros. Instead we have used a crude,
but efficient, "steepest-descent" method which amounts
to minimizing the functional

W[t] =JI d'r [t(r)(t*t)(r) cp(r)lj'—(iz)
with respect to t (r).

We have applied our method to the simple "soft-
sphere" model, made up of atoms interacting via the pair
potential

S"'(k) =X '(p~, ),

5 (k, k') =/V '(p~l, p 1, 1, ),
N

pl, = g exp(ik r;).

(14a)

(i41 )

c (k, k') is finally derived from the Ornstein-Zernike

I
I 1 1

modynamic state of the Iluid near freezing' ) in Fig. l.
The two functions are seen to diA'er considerably at all
distances r In. particular t(r) is much more negative in-
side the core region, and oscillates more rapidly, than
h " . Figure 1 also shows the function t(r) computed
for the one-component plasma near freezing [i.e. , for
I =e j akaT=178, ' where e is the charge and
a = (3/4trp) ' is the ion-sphere radiusl. It is remarkably
similar to the result for soft spheres under comparable
conditions; this close agreement reflects the similarity of
the density derivatives C~(r) in both models.

Once t(r) has been com~uted, the triplet DCF c t 1

and its Fourier transform c follow directly from Eqs.
(6) and (9). To test our approximation scheme, we have
carried out extensive MD simulations on a system of
N =256 soft spheres in a periodically repeated cubic cell,
using the standard Verlet finite-diA'erence algorithm. '

With the unit of time' r=(mcr je)', the first run ex-
tended over 10 time steps h, t =0.008~, for a thermo-
dynamic state y=1.13, i.e., just before freezing. In the
second run, 1.8 x 10 time steps were generated, with
At =0.01&, and y =1.17, corresponding to a slightly su-
percooled fluid state. The simulations yield directly the
pair triplet structure factors, for wave vectors k and k'
compatible with the periodic boundary conditions, ac-
cording to the definitions

V(r) = (cer/r) ". (i 3)

Like all inverse-power potentials, the soft-sphere model
has a trivial scaling property, according to which its re-
duced equilibrium properties (excess thermodynamics as
well as correlation functions) depend on a single dimen-
sionless coupling parameter —in this case y = (pa )
x (kaT/ e) 't . These properties are accurately known
over a wide range of y values from computer simula-
tions' and are well reproduced by the self-consistent in-
tegral equation of Rogers and Young (RY). ' We have
used this equation to compute C~(r); then Fq. (7) was
solved by the steepest-descent method to obtain t(r).
This function is compared to h ( (r) for y=1.15 (a ther-

I I

4 6
I'/Q

FIG. 1. Comparison of the functions h (r) (dashed curve)
and t(r), as determined from Eq. (7) (full curve), vs distance,
in units of a =(3/4zp) 't, for soft spheres near freezing
(y=1.15). The function t(r) for the one-component plasma
near freezing (I =178) is represented by dots.
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FIG. 2. Triplet DCF c"'(k,k') of soft spheres for isosceles

triangles, vs cosO (the geometry is shown schematically) for
ka =k'a =4.3 and y=1.17. Dashed curve, approximation (6)
[with r(r) determined from Eq. (7)]; dash-dotted curve, ap-

proximation (5); dots, MD data; the full curve is a least-

squares polynomial fit to the data, drawn for visual guidance.
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FIG. 3. Triplet DCF c (k, k, k) of soft spheres vs ka

(equilateral triangles). Dash-dotted curve, approximation (5);
full curve, approximation (6); dots, MD results; note the

change of scale around ka =3.

as a function of the side length k. The MD result is not
very reliable for the smallest wave number (ka=5 ' is

very small). The c calculated from approximations
(5) and (6) difl'er dramatically for ka (4; the predic-
tions of our theory are in fair agreement with the MD
data, and are again exact in the limit k 0. Approxi-
mation (5) is qualitatively and quantitatively wrong for
equilateral geometry. For ka ) 4, c (k, k, k) remains
very small and appears to oscillate around zero.

In summary, we have proposed a simple and eScient
approximation for the triplet DCF in dense fluids which
is similar in spirit to an earlier Ansalz for the triplet dis-
tribution function g . ' Comparison with the results of
long MD simulations shows that our approximation is

vastly superior to the standard factorization (5). The
new factorization (6), with r(r) determined by Eq. (7),
opens up the possibility of deriving a new type of simul-
taneous integral equation for the pair and triplet correla-
tion functions. The latter will allow a quantitative study
of angular correlations in dense fluids, and in super-
cooled liquids close to the glass transition. We are
presently examining in more detail the influence of the
pair potential on triplet correlations.
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relation (4). The statistical uncertainty on 5 (k, k') is

estimated to be of the order of (3-5)% on the basis of
the average values obtained for the imaginary part ofS, which should vanish identically. The error on c
is correspondingly larger, since this quantity, as deter-
mined from Eq. (4), represents a correction to the convo-
lution approximation (3) which is the dominant contri-
bution at intermediate wave numbers k =k '=k
[where k,„ is the position of the main peak in the struc-
ture factor 5 t ) (k)]. For significantly smaller wave

numbers, 5 (k, k) is small, and the relative errors on

S and c increase rapidly. For these reasons very

Ion~ MD runs are needed to obtain significant results for
c . An earlier attempt to compute c for a Lennard-
3ones fluid did not lead to conclusive results, because of
insuScient statistics. '

5 (k, k') and c (k, k') were computed for two par-
ticular geometries: (a) Isosceles triangles with k =k'
=k,, and various angles 0, such that 0 ~

i
k+ k'

i(2k,„; (b) equilateral triangles with various side
lengths. The MD results for geometry (a) are compared
in Fig. 2 to the DCF's c calculated from Eqs. (5) and
(6). Because of the large statistical scatter of the MD
results we show a least-squares polynomial fit to the data
for visual clarity. Note that according to Eq. (8), the re-
sult of approximation (6) is exact for f)=n Figure 2.
shows that our approximation for c correctly repro-
duces the general shape of the "exact" c, although
quantitative discrepancies remain, especially for small
angles 0. Approximation (5) leads to qualitatively
wrong results, especially near 19=0 and 0=x.

The comparison between MD and approximate results
for equilateral triangles [geometry (b)l is made in Fig. 3,
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