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Nonlinear electron plasma oscillations in a warm plasma are studied by use of Lagrangean coordi-
nates. Without recourse to amplitude expansion, the electron density is obtained as an explicit function
of space and time. In the zero-temperature limit, a restriction on the previously found cold-plasma solu-

tions is found.
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The problem of nonlinear electron oscillations in a
cold plasma was completely solved some time ago. '

The method was based on the introduction of Lagrange-
an coordinates which follow the fluid motion. Calcula-
tions become very simple in these coordinates. Inversion
to the fixed, Eulerian coordinates is given by an implicit
relation. An expansion for the number density as a func-
tion of space and time is obtained without an amplitude
expansion. A particular example such that inversion to
Eulerian coordinates has been obtained explicitly can be
found in Davidson's book, Chapter 3. The important
point, however, is that the general class of nonlinear
plasma oscillations depends on two arbitrary functions of
space. Thus any initial conditions can be considered. It
has also been shown that traveling Bernstein-Greene-
Kruskal modes, depending on x —Ut only, can be seen
to follow from the above by suitable choice of these two
functions.

The availability of high-powered lasers has led to a
renewed interest in highly nonlinear waves and in partic-
ular to the largest amplitude possible before the wave
breaks. This point will be considered at the end.

In this Letter, we extend the above considerations to
include the effect of a finite temperature. Using the
Lagrangean technique, followed by an additional coordi-
nate transformation, we reduce the problem to the solu-
tion of one second-order partial differential equation. To
solve this equation, we expand in the ratio of the Debye
length XD characteristic of the plasma microstructure to
that of the wave. This ratio is small in most physical sit-
uations and is in fact assumed small in the very deriva-
tion of the basic fluid equations used to describe the plas-
ma. Therefore our expansion scheme leads to no loss of
generality. There is, however, no amplitude expansion.
A class of exact solutions is obtained in this context. An
interesting result, obtained by consideration of the zero-
temperature limit, is that the class of cold-plasma-wave
solutions is drastically reduced. The two arbitrary func-
tions mentioned above are replaced by two constants.
This phenomenon will be further discussed at the end.

We consider an electron plasma described by the
equations

an, /at+a(n, V, )/ax =0,

a V, /at+ V, a V, /ax = —E( —1/n, )aP, /ax,

BE/Bx = 1
—n,

(2)

(3)

We additionally assume the adiabatic-isothermal pres-
sure law

(a/at+ V, a/ax) (P, /n, ') =0. (4)

x =x —„dr' V(x, r '). (5)

Following Ref. 4, we find that (1)-(4) give, with suit-
able preparation of the initial pressure p(x, 0) =n "(x,O),

f r

n(x, r) =n(x, 0) 1+J dr' V(x, r')
X

and one differential-integral equation for V,

B'V(x, r) +v( )
9T

y a P(x, O)BV(x, r)/Bx
n(x, o) ax [1+j;d"BV(x,.)/BX] +' (7)

These equations are all in terms of dimensionless vari-
ables such that the electron density n, is scaled to the
constant neutralizing ion background density np. The
length scale is the Debye length XD, and the time scale is
the inverse of the plasma frequency co~ (A.o=Pp/2to~,
&& m, n p, to~2, =4trnpe /m, ). The electron pressure is

scaled to Pp, the electron pressure at points where the
electron density is np. In what follows the subscript e
will be dropped.

We now introduce Lagrangean coordinates (x, r)
which follow the electron fluid in terms of the Eulerian
variables via the transformation
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For a cold plasma P is zero and this equation obviously
vindicates the introduction of a Lagrangean scheme.
However, the rather complex full form of this equation
undoubtedly detracted from further use of Lagrangean
techniques in this context. Fortunately, however, it can
be reduced to a differential equation. This is done by our
differentiating (7) with respect to x, integrating with

respect to r, and using (3) as an initial condition to give

(a'/ar'+ I ) i//= I —a'(i// ')/az '

gated in Eulerian coordinates.
To solve (8) we assume the space dependence to be

gradual as compared with the scale of the plasma mi-
crostructure (wavelength/XD= I/e)) I ). This allows us

to introduce a coordinate stretching z z/e and a

multiple-time expansion, z'0, T], T2, . . . , where T:„=e"ro.
Also y=yo+t y[+. . . . Now the lowest order form of
(8) is

[a'/a ri'i+ I ] yp
= 1,

Here i//=n(x, r) ' and the coordinate z is given by
z=f'n(x, 0)dx. We note that if i// is a function of
z —p z. only, solutions correspond to traveling Bernstein-
Greene-Kruskal waves. However, they are best investi-

solved by

i//p
= I +A (z, r i )cos O, O = rp+ p (z, r i ).

The first-order form is

(10)

(a'/a. ,'+ I ) &, =2(aA/a. , ) sinO+ 2A (a&/ar, ) cosO —(a'/a") (1+A cosH)
—

.

Conditions that no secular behavior arise are obtained by multiplying (11) first by sinO and then by cosO and integrat-
ing over 0 & 0 & 2z. This procedure yields the two conditions

aA I ia I2-ap A
ay

ari az az 'ari

a'I„
a, '" a.

' 2

(12)

where

+2K
I =A -'[I —(I —A') '"] I, = —

—,
' A(1 —A')

2/r "o (1+A cosO)"
(13)

As mentioned above, although obtained by an expansion technique, these equations are as accurate as (1)-(4). [The
cold-plasma result is simply (10) with A and p arbitrary functions of z.l

We now look for solutions to (12) such that A is a function of z only and p=gri+&(z), ( & 0, and g is a constant
frequency shift of order unity. Although this may seem restrictive, it does still include a large class of time-periodic os-
cillations, in particular the cold-plasma result. The g =0 case is not of interest, as it corresponds to infinite densities.
Negative g will also be seen in what follows to be unphysical. Now (12) yields dZ/dz =c/I, where c is a constant and

Ag =d I/dz —c /I .

This equation can be solved by our writing dA/dz =B(A), B =R/(dI/dA), leading to

d (r +c /I )/dA =2(A dI/dA,

to give

R(A) =b' —2([in( —,
' [I+(I —A ) ' ])—[I —(I —A ) ' )] —c /I (A) @=I,

R(A ) b2 ([3(I A 2) —5/2 4(1 A 2) —3/2+ I ] c2/'I2(A) y 3

(14)

(I S)

where b is an integration constant.
For g & 0, 0 & c & c,„,0 & b & b,„,R(A) is nonnegative between two roots of R, Ai and A2, such that

0 & A i & A & A2 & 1. For c =0 the condition becomes —I & —A i & A & Ai & 1. For ( & 0 there is no bounded solu-

tion. This is a nonlinear generalization of the fact that for a linear plasma wave, the frequency-squared shift is always
positive. Apart from g, the solution is given in terms of two constants b and c.

The relationship between x and 2 can be found from the above equations to be

dI/dA
dx = — dAJ A, [R (A ) ] 1/2

(I+A cosX), Ai &A &Aq.

We now concentrate on the case c=0, so that X is a constant, leaving a more general discussion to a fuller version of
this work.

If we use (5) and express V in terms of i//, simple integration leads to the expression

x =x —(I/&) [R(A)] '/'[cos(rot+I) —cosx], cp = I +&. (17)
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Combining (16) and (17) we obtain

—[R(A)] ' 2cos(rut+/), R =R/gaAi [R(A)]1/2
(18)

n(x, t) = [1+A(x,t) cos(tut+Z)] (19)

Importantly the Lagrangean variables have now been
eliminated and Eq. (18) can be inverted to give A as a
function of x and t. The form of 8 so found can be sub-
stituted into

, t2 f~i dA dI/dA
[R(A)]

(20)

!
is chosen such that the wave number k is the same as the
exact value so that

Similarly, we approximate R(A) by a2(1 —A /A() with
a2 chosen to ensure density conservation. Our approxi-
mations are good for all b, and do not assume small am-
plitudes. If we introduce A/A i =cosy, Eq. (18) reduces
to

(21)

to give the spatial and temporal dependence of the
electron-number density.

To illustrate the salient features of this solution, we
approximate the functions of A that appear in (18) so as
to give an explicit form of n(x, t) Th. e integrand is ap-
proximated by the parabolic fit ttl (I —A /A 1 )

kx = 7/+ 4 ] cos g cos (~g +g).
!

which has the correct behavior at the poles and where ai
This equation can be solved, giving finally

I . &I 1—=1+2A i cos(tot+I) + g —J„'(—nA i cos(oit+Z))cos(nkx), .
n 4 „]nn —]

(22)

This gives the space and time variation of the number
density which for 81 near its maximum value of unity
can have steep spatial variation, though for mt +X
= (2m+ 1)tr/2, m any integer, n is spatially uniform.

One can associate the time variation with a fundamen-
tal frequency tu (—= I+(). If we use (20) to eliminate g
and revert to physical variables, this may be written in
the form

=co&[1+k kDG(A i, 1')], (23)

where G(A|, y) 1 for Ai 0, thus reproducing the
well-known linear dispersion relation [a term of order
k XD has been neglected but as stressed above this is
consistent with the range of validity of Eqs. (1) to (4)].

Although the above solution (22) looks somewhat like
that found for the cold-plasma case (see Ref. 4, p. 40), it
is in fact fundamentally diA'erent. In the cold-plasma
case, the disturbance at t =0 can be arbitrary, but was
specified to be of the form n = 1+h, coskx. In the pre-
sent, warm-plasma case, the shape at (=0 results from
the calculation and it is not a cosine as may be seen by
our putting t=0 in (22). Whereas in the cold-plasma
case, one is free to shape the wave initially, 4 and E be-
ing arbitrary functions of space, in the warm-plasma
case we can only specify the amplitude and wavelength
(A i and k). This drastic reduction in the class of possi-
ble solutions is not so surprising if we look at linear wave
theory. In such a theory the dispersion relation is co

=co~(1+k XD), and gives a unique value of k 2 for a
given frequency co. Therefore only one mode can be ex-
cited. In contrast to this, for a cold plasma m =co& and
any combination of spatial modes is allowed. This
diA'erence is reflected in the nonlinear regime as found in
the present analysis, arbitrary functions in the cold-
plasma case being replaced by constants for the warm

plasma. Mathematically this is seen in Eq. (18), which
admits arbitrary space dependence for t. =0, but not for

0.
In summary it has been shown that thermal efIects can

be incorporated into a Lagrangean-based theory, ex-
pressed in the form of a simple differential Eq. (8).
Above all we have seen how, at least for a particular
case, the well-known concept of a standing wave extends
into nonlinear plasma physics. In particular the concept
of a dispersion relation can still have meaning for all am-

plitudeses.

The class of solutions of the basic Eq. (12) has been
restricted to those where rlA/r) ri =0. Although this class
includes the cold-plasma case, its full implications are
not fully understood. On the other hand, the removal of
the condition c=0 simply leads to more complicated
forms for n(x, t) but not to any quantitative differences.

A number of authors have used various nonlinear
theories to estimate the maximum amplitude of the elec-
tric field, E,„,allowed before the wave breaks. In the
present calculation the condition is, from (19), simply
A(x, t) =1 for some x and t, and since the maximum
value of A(x, t) is Al the condition is simply A|=1. It
will be noted that this value is independent of the
thermal velocity VT. If one carries out the analysis to
next order and evaluates yi, then a correction of order
e (~ Vr) is obtained. In two distinct problems con-
sidered previously, that of forced oscillation and of
Bernstein-Greene-Kruskal waves in one-dimensional
"water-bag plasma, " E,„was found to be of the form
of a constant minus a term proportional to VT'/, for
small VT. Thus comparatively speaking, the standing
waves discussed in this Letter have E,„almost tempera-
ture independent.
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This weak VT dependence for standing waves seems
more natural when one considers how energy scales. The
increment in the electric field energy, (AE ) /8x, when
we go from zero to small but finite VT, scales as VT. The
reason why this is not found in the two cases mentioned
above is that the energy considerations are more
complicated —for forced oscillations by the presence of
the laser field which drives the wave, while for
Bernstein-Greene-Kruskal waves by the energy contribu-
tion associated with the constant phase velocity of the
wave. (Incidentally, the Vr'j dependence common to the
two cases is not universal. For an "isothermal" plasma
the correction is proportional to VT as can be derived
from the result of Infeld and Rowlands. ) Thus we con-
clude that the temperature dependence of E,„depends
critically on the experimental arrangement and that in

particular for standing nonlinear waves the dependence

on VT is weak.
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