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Oscillatory Traveling-Wave Convection in a Finite Container
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8T& T Bell Laboratories, Murray Hill, Ne~ Jersey 07974

(Received 27 January 1987)

It has been proposed that the oscillatory traveling-wave states recently observed at the onset of con-
vection in ethanol-water mixtures can be explained in terms of the linear properties of the waves, taking
into account their reflection at lateral boundaries. We present experimental results which support this
picture and explore a number of properties of this physical situation, including the existence of states
which are modulated by a second frequency at onset.

PACS numbers: 47.25.—c

The recent discovery that convection in binary fluid
mixtures takes the form of traveling waves has been the
subject of both experimental ' and theoretical' work.
In this Letter, we demonstrate the validity of a model of
the nature of the oscillatory, traveling-wave states which
are observed at onset in finite-sized containers, and we

explore properties of these states which are qualitatively
different from those observed in convection in pure
fluids.

Convection in mixtures is described by four dimen-
sionless parameters: the Rayleigh number R, which is

proportional to the temperature difference across the lay-
er; the Prandtl number P, which is the ratio of the
viscosity to thermal diffusivity; the separation ratio +;
and the Lewis number L. The quantity %' is a measure
of the destabilizing effect of concentration gradients pro-
duced by the Soret effect:

w = —c(1 c)(r)p/6c)T—(8p/6T), 'ST,

where c is concentration, p is density, T is temperature,
and ST is the Soret coeScient; and the Lewis number,
L, is the ratio of the diffusivity of concentration to that
of heat.

For + ~ —L, convection is expected to begin as an

oscillatory state with a well-defined frequency. Recent
studies of the onset of convection in ethanol-water mix-
tures show that the conducting (zero-liow) state does be-
come unstable to oscillatory convection as expected, but
that, at fixed Rayleigh number, the oscillations grow un-

til overturning convection is triggered. Similar tran-
sients had been observed previously in thermohaline con-
vection in a beautiful set of experiments by Caldwell,
but to our knowledge, the implications of these results
had not been generally appreciated.

Experiments in ethanol-water mixtures established
that these oscillatory states can be described in terms of
counterpropagating traveling waves which grow ex-
ponentially in space as they propagate. Cross suggested
that these states can be understood in terms of the linear
properties of the oscillatory traveling waves. The spa-

tial growth is determined by the temporal growth rate
and the group velocity; and, in order to achieve a state in
which the amplitude of oscillation is constant in time, the
Rayleigh number must be adjusted so that the exponen-
tial growth in space compensates the loss on reflection at
the end walls. In this Letter, we present experimental
results which provide quantitative tests of Cross's mod-
el, and we go on to demonstrate fundamental differ-
ences between the nature of these oscillatory flow pat-
terns and those observed in pure fluids. Examples in-
clude the boundary conditions on the traveling waves at
the end walls of the container and the observation of
self-modulated states, which are composed of two waves
with different frequencies and wave numbers, each satis-
fying a resonance condition in a container of finite ex-
tent.

The experimental apparatus, which is described else-
where, consists of a cell with plastic walls, a copper
bottom plate, and a sapphire top plate. The cell is 0.47
cm in height and has one lateral dimension of 3.76 cm.
An important feature of the experiments reported here is
the ability to vary the second lateral dimension, L, of the
container continuously from 5.5 to 8.5 cm by a movable
end wall. The working fluids are mixtures of ethanol and
water, with weight concentrations of ethanol ranging
from 0.35% to 27%, operating at top-plate temperatures
of from 10 to 30'C. The Lewis number L ranges from
0.005 to 0.009. The entire flow pattern is visualized
from above with use of a shadowgraph technique. The
image of the flow is recorded with a charge-coupled-
device camera and analyzed by use of digital image-
processing techniques.

In previous studies of oscillatory convection in
ethanol-water mixtures, it was established that the oscil-
lations have a frequency and an onset Rayleigh number
which are consistent with linear theory, and that the flow
pattern consists of rolls oriented parallel to the shorter
lateral dimension. The observed convection amplitude
as a function of space and time for + = —0.55 is shown
in Fig. 1. The data are well described by a function of
the form

4 (x, t) =Roe"'[e"t'cos(kox —
not ) —e "t cos(kox+ coot )],
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FIG. l. The image intensity (closed circles) as a function of
position along the long dimension of the cell at several times
for += —0.55. The period of oscillations is 51 s, and the as-
pect ratio is 14.24. The solid line is a fit to the data with use of
Eq. (I ).

where coo and ko are the frequency and wave number of
the waves, and y and l ' are the temporal and spatial
growth rates of the slowly varying envelope. We have
shown experimentally that y is proportional to the re-
duced Rayleigh number, e=(T R p)/R p, where R,p is

the observed Rayleigh number at the onset of convec-
tion. The data in Fig. 1 were taken by the adjustment
of e so that y=0 in order to achieve a (neutrally stable)
steady state.

Cross proposed that convection patterns such as those
illustrated in Fig. 1 can be explained in terms of the
linear properties of traveling waves of oscillatory convec-
tion. I n particular, he pointed out that, if the
reflectivity r of the end wall is less than unity, then, to
achieve a steady state, the wave must grow in amplitude
as it traverses the cell. For such a state, the exponential
growth length l will be given by
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FIG. 2. The normalized growth length, 1/L, and the onset
Rayleigh number, R,p/R„as functions of aspect ratio, for
+ = —0.28 (circles), —0.45 (triangles), and —0.55 (squares).
The quantity R,o is calculated with use of the observed temper-
ature diAerence at onset and the thermal properties of the mix-
ture, and R, = 1708.
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The model also predicts that the attenuation of the
traveling waves upon reflection at the boundaries will
lead to a shift, h, t. , in the onset Rayleigh number. This is
because the Rayleigh number of the quasisteady state
must be sufficiently far above the onset of oscillatory
convection in an infinite system to produce the spatial
growth required to compensate the loss on reflection.
We have previously observed that the temporal growth
rate, y, is a linear function of e and have measured
By/Be. If the onset of convection is exceeded by Ae,
then the growth length l is given by the expression
(By/Be)ke = (Bep/Bk)k, l '. Thus De =8/I, where

l =L [In(I/r)] -'. (2) 8 =(B~/Bk), ,(By/Be) '(ld/L) -'. -

Thus l is directly proportional to L. Shown in Fig. 2 are
measured values of l/L for various values of aspect ratio,
I =L/d, where d is the —height of the cell. Cross's pre-
diction that 1/L is independent of I is verified by the
data.

Cross calculates values of the reflection coefficient r as
a function of + in a model which assumes rigid, im-

permeable end walls and free-slip, permeable, horizontal
boundaries. Values of r inferred from the measured
growth length l and Eq. (2) as compared with Cross's
predictions (indicated in brackets) are 0.31 [0.12], 0.30
[0.20], and 0.29 [0.28] for values of %' of —0.06, —0.28,
and —0.55, respectively. Thus, the predicted and mea-
sured values of r are in good agreement at large negative

Since l/L is independent of L in a steady state, Ae is in-
versely proportional to I. Note that this expression is
qualitatively diA'erent from the efI'ect of aspect ratio on
the onset Rayleigh number in pure fluids, where the
lowest-order correction is h, t. —I . For the flow pat-
terns shown in Fig. 1, this second-order correction is 2
orders of magnitude smaller than that which we ob-
serve.

Shown in Fig. 2 are data for R,p/R, as a function of I
for 0 = —0.28. The solid line is a fit by the form
he=8/I. The value of 8 inferred from this fit is 0.44.
For comparison, measurements of l, (Bcu/Bk)k, (de-
scribed below), and By/Be yield a value of 8 =0.39.

Under most conditions, the onset of oscillatory convec-
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FIG. 3. The image intensity at one spatial point as a func-
tion of time for a self-modulated state with += —0.45. Ini-
tially, the Rayleigh number was adjusted for a positive growth
rate; later, the growth rate was reduced to zero to achieve a
steady state.

60000

y(e k) =(By/Be)[e go(k k ) ], (3)

where gp is a coherence length and k, is the critical wave
number. In a steady, unmodulated state, such as that
shown in Fig. 1, the mode with wave number k„closest
to k, will have zero growth rate, while all others will de-
cay. However, if the gain curve is centered between two

tion has been observed to begin with a smooth, exponen-
tially growing transient with frequency coo and growth
rate y. However, we have also observed a qualitatively
diferent behavior, illustrated in Fig. 3, where the tran-
sient is modulated at a lower frequency. These states
also have an overall growth rate which is proportional to
e and can be made neutrally stable by suitable adjust-
ment of e. The time interval between zeros in this modu-
lated state is found to be approximately 2L(B /cBpk) , k,

which is the round-trip transit time of the oscillatory
traveling waves. As shown in Fig. 4, this low-frequency
modulation corresponds to an oscillation of the wave am-
plitude from one side of the cell to the other. Observa-
tion of the waves at times near 250 and 750 s reveals
traveling waves propagating in one direction with a
pllase velocity equal to cop/kp. These fully modulated
states are observed at values of the aspect ratio which
are separated from each other approximately by integers.

The existence of such modulated states at particular
values of I can be understood by our noting that, for
constructive interference of the waves in a cavity of
length I., the wave number must satisfy a resonance con-
dition such that 2(k„L+p, ) =2ntr, where p„ is the phase
shift on reAection. The system has a linear gain
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FIG. 4. The image intensity as a function of position along
the length of the cell at several times during one-half of the cy-
cle of modulation in a self-modulated state at + = —0.55.

8 (x, t) = cso( utr/2L )coskc,

where u =x —(Bcp/Bk)kt and v =x —(cTt/k)t, with k
= (k„+k„ i )/2 and cp = (cpk + cpk, )/2. The low-
frequency modulation as a function of the variable u

with spatial period 4L corresponds to that shown in Figs.
3 and 4. The boundary conditions at the end walls deter-
mine the relative phase of left- and right-going waves,
and the resulting expression for the total amplitude is in

~ ~ 10excellent agreement with the data in Fig. 4.
Measurement of the temporal modulation frequency

gives a direct measure of the group velocity (Bcp/Bk)k, .
For the data shown in Fig. 4, we find (Bco/Bk)k, =(0.93
+ 0.01)(cpp/kp). By measuring the relative growth rate
of the two modes in the modulated state as a function of
cell length, we are also able to measure the coe%cient,
gp, in Eq. (3) and find gp/d =0.14 ~ 0.01. For compar-
ison, recent calculations assuming rigid, impermeable,
horizontal boundaries predict ( Bcp/kB) ,k=0.97(cop/kp)
and gp/d =0.145 for this value of +. '

The experiments reported here provide strong support
for Cross's model of oscillatory, traveling-wave convec-

modes with mode numbers n —
1 and n, then both modes

will have comparable growth rates, and the convection
pattern will exhibit their interference. For example, if
we consider the two waves traveling in the positive x
direction in an infinite system, the amplitude 2 (x, t) will
be
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tion in a finite container. Specifically, we have verified
that the growth length l is independent of L and that
there is a shift in the onset Rayleigh number as a func-
tion of aspect ratio which is in quantitative agreement
with that expected.

Cross's theory and the experiments described here re-
veal qualitative diflerences between the onset of convec-
tion in binary and in pure fluids. In convection in pure
fluids near onset, there is a macroscopic healing length
).—d/e' near an end wall because the fluid velocity
must vanish at the position of the wall (which also corre-
sponds to a roll boundary). In contrast, for the convect-
ing states studied here, this length is found to be very
short. For example, for the data in Fig. 1, one would ex-
pect k ) 5d —L, whereas we find no evidence of a healing
length k ~0.3d in any of our experiments. We note that,
in spite of the short healing length which is observed, the
system selects oscillatory flow patterns which are com-
posed of rolls parallel to the short side of the rectangular
container, just as in the case of convection in pure fluids.
In the traveling-wave case, this is because waves travel-

ing parallel to the long dimension of the container can
have zero net growth rate at Rayleigh numbers at which
waves traveling parallel to the short dimension are
damped by reflection losses.

The modulated states show directly that the wave
number in the system is quantized and have allowed
measurement of the group velocity and the coherence
length go. These self-modulated states introduce a
second frequency into the flow at onset. In general, we

find that this frequency is incommensurate with coo, and
one might expect such a situation to exhibit chaotic tra-
jectories of fluid elements at the onset of convection. "'
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