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We formulate the problem of self-propulsion at low Reynolds number in terms of a gauge field over
the space of shapes. The computation of this field is discussed, and carried out in some examples. We
apply our results to determine maximally efficient infinitesimal swimming motions of spheres and circu-
lar cylinders.

PACS numbers: 47. 10.+g, 87.45.—k

Swimming microorganisms live in a world without in-
ertia. ' In the limit of zero Reynolds number, the
swimmer's path through a fluid is determined solely by
the geometry of the sequence of shapes that it assumes,
and not by the rate at which it changes shape. In this
paper, we shall describe how, as a consequence of its in-

trinsically geometric nature, the problem of self-
propulsion at low Reynolds number naturally resolves it-
self into the computation of a gauge field over the space
of shapes which the swimmer may assume. This gauge
field A, which takes its values in the Lie algebra of the
group of rigid motions, determines the overall motion of
the swimmer induced by a given infinitesimal change of
shape. The net rotation and translation of a swimmer

may be expressed as an integral of A along the path in

shape space corresponding to the swimming stroke.
If the swimming stroke is composed of small deforma-

tions of a shape S, the problem reduces to computing the
derivative of A, the "field strength"F at S. We compute
F at two points in shape space, the sphere and the circu-
lar cylinder. The result describes all possible infinitesi-
mal swimming motions of these shapes, and allows a
determination of the strokes of maximal efficiency.
Infinitesimal swimming motions are relevant to the study
of ciliated protozoa, which swim by waving a layer of
short, densely packed cilia, in synchronous waving
motions. In an approximation known as the envelope
model, the eA'ects of the individual cilia are ignored and
the shape is taken to be a smooth surface covering the
entire ciliary layer. The qualitative features of ob-
served ciliary beating patterns are consistent with our
analysis of efficient swimming strokes.

The gauge potential. —Generally, gauge structures are
associated with redundancy in the description of a physi-
cal system. In electrodynamics, the simplest gauge
theory, we are forced to make an arbitrary choice in or-
der to eliminate a redundancy in the gauge potential,
which is determined by Maxwell's equations only up to
the addition of a gradient. A similar redundancy, depict-
ed in Fig. 1, occurs in the context of the kinematics of
deformable bodies. Namely, in order to discuss the
motion of changing shapes, we must choose a point of
reference and an orientation for each possible shape, rel-

ative to which the motion may be measured. In ordinary
Newtonian mechanics, the natural reference point to
choose is the center of mass. However, at zero Reynolds
number, in the absence of inertia, this choice is as arbi-
trary as any other. Nor is there a canonical choice of
orientation for a given shape. For each shape, the set of
reference frames we may choose from is isomorphic to
the Euclidean group E3, since each frame is related to
any other frame by a rigid motion. Thus, the choice of
frames admits a gauge freedom with gauge group E3.

Let us suppose we have now made a choice of a refer-
ence frame, or equivalently of a standard location in

space, for each shape. We determine the location of any
shape relative to its standard location. That is, if S(tT) is
a shape with boundary parameterized by o., then there is
a rigid motion R relating S to its associated standard
shape So

S(a) =RSO(o).

A body is self-propelling if it exerts no net force or
torque on itself. A swimming stroke is therefore com-
pletely specified by a time-dependent sequence of stan-
dard shapes So(o, t); the overall rigid motion will be
determined by the conditions of vanishing force and
torque. By solving the fluid mechanical equations of

FIG. l. In order to measure distances between diferent
shapes, an arbitrary choice of reference frames must be made.
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motion, we can uniquely determine the actual path of the
swimmer through space as

S (o, r ) =R(r )So(cr, r ), (2)

where R(t) is a sequence of rigid motions. The dynami-
cal problem of self-propulsion at low Reynolds number
thus resolves itself into the computation of R(r), given
So(r ).

We now define

dR =R R ] dR =RA.
dt dl'

A is defined on the tangent space to the space of stan-
dard shapes and takes its values in the Lie algebra of E3.
It is a linear map which gives the overall displacement of
the shape Sp resulting from an infinitesimal deformation
So. Integrating Eq. (3), we find the net translation and
rotation from time tl to t2 as a (reverse) path-ordered
exponential

f 12

R(r2) =R(r, )Pexpz A(r)dl (4)

It should come as no surprise to readers familiar with

gauge theory that, under a change in our choice of stan-
dard shapes So=A [So]SD, A transforms as a gauge po-
tential should:

A=nAn ' —(dn/dr)n (5)

We now describe how to compute A(i), given a se-
quence of forms So(t). In general, this sequence of
forms is not itself an allowed motion, for it will lead to
net forces and torques on the swimmer. The correct
motion, involving the same sequence of forms, will in-
clude additional time-dependent rigid displacements,
which cancel the net forces and torques. These displace-
ments tell us the net velocity of the shape relative to the
fluid at infinity. In order to find A(t), given So(r) and
its time derivative So(r ), we must solve Stokes' equations
for the response of the fluid to the deformation:

V ~ =0, V (Vxv) =0

v
I s, =LSD/Br

(6)

(7)

Note the invariance of these equations under time
reparametrizations, to which we alluded above. As they
stand, Eqs. (6) and (7) determine the motion of the fluid

only up to the addition of flows which rigidly translate or
rotate the shape, and which thus do not aflect the no-slip
boundary condition (7). Hence, we are free to add such
flows as are necessary in order to cancel any net forces or
torques produced by our "trial motion" So(r). The re-
sult, which can be shown to be uniquely determined, is
the actual fluid motion.

As an example of the computation of A, we consider
the case of a cylinder which swims by deforming its cross
section. We can exploit the two dimensionality of this

n (p n( —]

then A is given directly in terms of the leading coeS-
cients of pl and p2 as

A tr a —&, A rot Imb —2 (i 0)

Here 2'" and A"' are the shape's net translational and
rotational velocities. The boundary-value problem (7) is
most easily solved when S(o) is a conformal mapping
from the unit circle a=e' into the z plane. The use of S
to conformally pull Eq. (8) back to the unit circle then
reduces the problem to equating Fourier coefficients. If
S is a conformal map of degree N, then in general N+2
simultaneous linear equations must be solved in order to
determine a —] and b 2, and hence A. For conformal
maps of degree less than 2, such as

So(cr, r ) = ao(r) cr+ a p(r )o + a —)(r ) o

we find that

Q —2Q —3,

A" =Im Q 2 Q 2 + Q 3Q 3

I ao I
+

I
a —2 I

+
I
a —3 I

Infinitesimal deformations: the geld srrengrh—Cyclic swimming strokes composed of infinitesimal de-
formations may be treated as follows. Suppose we have
a sequence of standard shapes

So(cr, r) =So(o)+s(a, r), (i3)
where s(t) is infinitesimal, of order e. We expand s(t)
and A(t) in terms of a fixed basis of vector fields w„(o.)
on Sp.

s(o, r) =g„a„(r)w„(o),
As (,)[Sp(r)] =g, a;(r)A„, [So(r)].

(i4)

(is)
Then the path-ordered-exponential integral of Eq. (4)
may be written

P exp IIt g„A„[SD(t ) ]a„(t)dr (i 6)

problem by defining a complex coordinate z =x+iy.
Then the general solution of Eq. (6) may be written in
terms of two functions pl and p2 analytic outside of the
shape as'

) =pi(z) -pI(=)+p (z).

To determine v, we need only match v(cr) to t)SD/t)t on
the boundary of So(cr) and then analytically extend
p~(o) and &2(cr) to the full complex plane. A may then
be determined from the leading behavior of the trial
motion ~ at infinity as the rigid motion of the shape
necessary to cancel all net forces and torques. In fact, if
we have the expansions
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We now expand Eq. (16) in powers of e. The first-order term is the integral of a total derivative, and vanishes around a
cycle. The second-order term is found to be

'
a~. a~. —[A„,A„] a a„dt=—IIt g F „[Sp]a a„dt

2 m ~ ~wm ~wn mn

F „[Sp], which we call the field strength, encodes all information on cyclic swimming motions due to arbitrary
infinitesimal deformations of So.

To compute F „,we examine the following sequence of deformations:

Sp(o) Sp(cr) + ew (cr) Sp(a) + ew (o) + riw„(cr) Sp(cr) + riw„(cr) Sp(a). (is)

The resulting net rotation and translation will be

(R,d) = I+ e'rtFmn (19)

) n+ ( i(n+1)8 (2o)

We now apply this procedure to evaluate fm„at the
circular cylinder. In this case, we take as a basis for the
vector fields on the circle

!
done against the quid, so that

r

dt dS, v;cr;i, (2S)

where o.
;~ is the Quid stress tensor.

For the circular cylinder, the power output at time t is

found to be

and allo~ the infinitesimal parameters t.. and g to be

complex. Then for each m and n, F „will have four
components, corresponding to the real and imaginary
parts of e and ri, which we define by rewriting Eq. (19):

P=2rrpe'g!n+1! Ia„I'—:QP „a a„
m, n

for the stroke

Sp(o', t ) =a+ e g a„(t )0

(26)

(27)

(R,d) = I+eriFmn+ eqF „+ejF „+e—rtF-(21) n& —[

The result of a straightforward calculation is

F"„=[ —(m+ 1)e- + (n+ 1)e „]6
F"„=[(m+i)e .—(n+ i)e„]S. „,= —F'"„,(22)

F"„=[(m+1)e —(n+ i )e „]S
F"„'=—F—"„'=[(m+1)e —(n+ l)e „]6

(23)
F,"—' =

I
m+ 1

I
~ —,o,

where 0„ is 0 for negative n and 1 otherwise. Most of
the components of F are zero, due to the symmetry of
the circular cylinder. This means that only certain
swimming motions, which couple modes m and m ~ 1 or
—m ~ 1, lead to a net translation.

A similar calculation may be performed for small de-
formations of the sphere. ' Expanding the deformation
modes in vector spherical harmonics, one again finds that
most of the components of F vanish, and that the non-

vanishing components increase roughly linearly with the
total angular momentum J.

Efficiencies Now that we.—have effectively found all

the infinitesimal swimming motions of the circular
cylinder and the sphere, it is natural to ask which of
these motions are the most efficient. We define the
efficiency to be proportional to the ratio of the shape's
average net velocity to its energy output per cycle:

average velocity U (24)g
energy output per cycle

We assume that the only work done by the organism is

Hence the efticiency of this stroke is

fo dt gm „Fmnaman
Tl

Tfp gm nPmnaman
(2s)

To determine which strokes are maximally eflicient, we

set the variation of g with respect to each of the e„equal
to zero. This leads to an infinite set of equations of the
form

-gF „a„qP „a„=—oBg
6a

or, in a more succinct notation,

P 'Fa = ga.

(29)

(3o)

ri,„-cos[rr/(p+2)] ( 1.

Strokes of maximal efficiency are symmetric about the
axis of propulsion, and irrotational. They are composed
of traveling waves moving from the leading end of the
shape (relative to the direction of the net motion) to the
rear, attaining a maximum amplitude near the middle.
A stroke with k =10, m =0.1, and p =9 is plotted in Fig.

If V is an eigenvector of P 'F with eigenvalue g, then
a(t) =Reexp( —2rrit/T) V is a stroke of extremal effi-

ciency. Our problem thus reduces to finding the eigen-
vectors of P F with maximum eigenvalue. This pro-
gram may be carried through completely in the case of
the circular cylinder, to find maximally efficient strokes
coupling modes k, k+1, . . . , k+p and —k, —(k+1),
. . . ,

—(k+p). The maximum attainable efficiency is

found to be
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t=o. o t=0.2 t=0.4

t=0.6 t=0.8 t=1.0

FIG. 2. A cylindrical swimming stroke of e%ciency g =0.94,
coupling modes 10, 11, . . . , 19 and —10, —11, . . . ,

—19.

2. Its efficiency is approximately 0.94 and the net (left-
ward) translation per cycle is 0.51@ in units where the
average radius is 1.

Similar results are obtained for the sphere, for large
minimum mode number J, but we have not analyzed
the case of deformations with finite mode numbers com-
pletely.

It would be worthwhile to extend our analysis to other
shapes, such as prolate spheres and elliptical cylinders.
It should be possible, by using conformal mapping tech-
niques, to compute F for cylinders with a wide variety of
cross-sectional shapes. It may also be possible to approx-
imate the high-frequency components of F „ for arbi-
trary shapes: Since the Aows generated by high-

frequency disturbances on the boundary of a shape tend

to die rapidly with distance, it seems reasonable to treat
them approximately, by replacing the shape locally with
its tangent plane. Such an approximation has been dis-
cussed in the context of the envelope model (see Ref. 4
and references therein), although, to our knowledge, a
firm mathematical justification is lacking.

We would also like to suggest the applicability of our
ideas to other linear partial differential equations and
other types of boundary conditions. For example, one
might consider unparametrized shapes, appropriate to
describing the motion of air bubbles. In this case, one
would impose "slip" boundary conditions, and divide the
shape space further by the group of reparametrizations.
The gauge group would then be infinite dimensional ~
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