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Polarization Dependence of Gain in Stimulated Raman Scattering
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We present a new, rotationally invariant formalism for the theory of stimulated Rarnan scattering.
The formalism is applied to Raman transitions of well-defined rotational symmetry, e.g. , rotational Ra-
man (Stokes) transitions, yielding the explicit dependence of gain on light polarization, phase mismatch,
and frequency offset.

PACS numbers: 42.65.Dr

The theory of stimulated Raman scattering (SRS) has
undergone a great deal of development in the last two
decades, ranging from the initial steady-state, mono-
chromatic, ray-optics calculations for a dispersionless
gas' to more extensive theories including the transient
phonon response, the spectrally wide laser, wave-optics
(diffractive) effects, strong dispersion, and quantum-
electrodynamic eAects. An additional process which
has been discussed in the literature is the eA'ect of
Stokes —anti-Stokes coupling and its dependence on the
phase mismatch and frequency oAset from the Raman
resonance in the associated four-wave-mixing process in

which two laser photons are simultaneously converted to
a nearly copropagating Stokes and an anti-Stokes pho-
ton. However, to our knowledge, no general theory of
the polarization dependence of the gain has been formu-
lated. Such a theory is crucial for the understanding of
rotational SRS, in which two units of angular momen-
tum are transferred to the molecules of the medium.
The transfer of angular momentum implies, for example,
that the four-wave mixing responsible for parametric
gain suppression disappears when the (pump) laser and
Stokes photons copropagate and are circularly polarized
in opposite senses. We sketch such a general theory in

this Letter. We show that rotational Raman conversion
may be described in terms of six complex eigenvalues,
three of which correspond to growth and three to at-
tenuation. In general, the value of each eigenvalue is
determined by the ratio of the laser intensity to the phase
mismatch, the oftset from the Raman resonance, and the
polarization state or coherency matrix of the pump laser.

We calculate these eigenvalues for a linearly, circularly,
elliptically, and partially polarized laser. To our
knowledge, this is the first SRS formalism which is gen-
eral enough to treat pump light of arbitrary polariza-
ti on, including partial polarization. It is particularly
applicable to very recent experiments on and modeling of
stimulated rotational Raman scattering. '

Consider a pump, Stokes, and anti-Stokes waves, with
fields Ep, Ep, and EA, respectively. We model each as
consisting of an arbitrary number of axial modes of
equal intermode spacing h, co. Factoring out the central
optical frequencies, we write the fields in terms of slowly
varying amplitudes as follows:

I l % v. indra(z/c —t)1 ' t&F z ~FI ~ + C.C. ,

where F=P, S, or A; cop is the circular frequency and
kF is the wave vector of wave F. For simplicity we re-
strict our analysis to the steady-state response of the Ra-
man phonons. We assume that cop —ms=mA —cop, but
that the central beat frequency cop —

cup does not neces-
sarily coincide with the Raman shift Q. We also assume
that hen)&t, where 2I is the FWHM Raman linewidth,
but that the total spectral width of each wave is small
enough that the difterence in group velocities between
the waves (due to dispersion in the medium) has no ap-
preciable eAect. As has been shown by many authors, "
this assumption makes the multimode problem similar in
many respects to that of a single axial mode. The slowly
varying phonon amplitude R may then be expanded in
spherical tensors of rank J and various components m
( —J (m ( +J) as follows:

(2)
= g (Jm
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where (Jm
~

1 1 a —P) is a Clebsch-Gordan coefficient, F, „ is spherical component a of the amplitude of axial mode n
of field F (=A, P, S), and Ak is the phase mismatch, given by 2k' —k —ks. The form of Eq. (2) is intuitively obvious:
The field amplitudes are rank-1 spherical tensors which must be combined as indicated in Eq. (2) to form spherical ten-
sors of rank J so that both sides of Eq. (2) transform in the same way under an arbitrary rotation of coordinate axes.
Let the (plane) waves propagate along slightly different directions centered on z, so that d,k lies along the z direction.
The equations for the spatial evolution of the waves is then
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where g is given by

(J) —N (J) (J)/(1+ ig)

Here N is a normalization constant, go is a (real) Stokes-amplitude gain coefficient, and & is the normalized fre-
quency offset, (cue —ri)s —0)/1 . For convenience we have normalized the sums of the squares of the pump field ampli-
tudes to unity, so that the real coefficients go are proportional to the pump intensity.

With no loss of generality, we will now treat the case in which only a single coefficient go is nonzero. As will be dis-
cussed below, this will be exactly true for S rotational transitions, and approximately true for many vibrational transi-
tions, as well.

To find the eigenvalues of Eqs. (2)- (3) in the small-signal limit of no significant pump depletion, we differentiate Eq.
(2) with respect to z and substitute Eq. (3) into the resulting equation. We obtain

B,R( =g *g(D M+B M)R ~—iI).k g h,+, „P~*„e
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and C,„ is the coherency matrix of the pump laser:

Cap gn PanPpn, ,

Differentiating Eq. (5) with respect to z and substituting Eq. (3) into the resulting equation yields

(6)

(10)

et us now consider the possible values of J. The
0, J= 1, and J=2 phonons correspond respectively to
tering with isotropic, magnetic-dipole, and electric-
drupole rotational symmetry, as described by Pla-
k. ' All three types of scattering may contribute to

electronic Ram an effect. For a Q (0) vibrational
nsition the selection rules allow only J=O, i.e. , the
nons carry no angular momentum. This case is

straightforward and will not be discussed in detail; the
eigenvalues of the (scalar) phonon are just those calcu-
lated by Shen and Bloembergen and the Stokes polar-
ization is identical to that of the pump. Far from an
electronic resonance, the J=1 scattering is negligible for
both the vibrational and rotational Raman eAect. ' Al-
though g(j) vibrational transitions (j&0) may in gen-
eral contain elements of both J=O and J=2, J=O often
dominates (e.g. , for diatomic molecules). For all pure
rotational (S) transitions the selection rules allow only
J=2. In the remainder of this Letter we will focus our
attention on this case.

At the phase-matching angle we find that for quanti-
zation along z the matrix D+B is already diagonal; Eq.
(5) reduces to

R =R,e"'~~

so that u represents the complex eigenvalue, normalized
to golo (Io is the laser intensity); the real part of u is

proportional to the gain. Since Eq. (10) is homogeneous
in R, the roots u must satisfy

det [u (u +iK)I —u i1 (D +B) —i KgD] =0, (12)
where I is the identity matrix, rl =g*/golo, and K
=5k/gplo is the phase-mismatch factor.

Before discussing the roots u in the most general case,
we investigate the limits of both small and large phase
mismatch. According to Eq. (12), the eigenvalues u in
the phase-matched limit (!K! «1) are obtained by di-
agonalizing the matrix D+B. On the other hand, far
from phase matching (!K! )) 1) we find instead that the
eigenvalues are obtained by diagonalizing D; this may
also be seen directly from Eqs. (2) and (3) when the
terms in those equations proportional to the anti-Stokes
field are neglected.

B,R
= (mgo /2) (1+iX) '(C —C ——)R

where m=0, ~ 2. Thus for pump light which is right

I3, R =g*(D+B)(),R —i hk [(1,R —g*(D+B)R]—i Ak g*BR
where R is now understood to be a column vector with
21+1 elements given by Eq. (2), while D and B are ma- L
trices with matrix elements given by Eq. (6); we have J=
suppressed the superscripts and subscripts to simplify the scat
notation. Equation (10), which determines the phonon qua
growth for arbitrary phase mismatch, is the central re- cze
suit of this Letter. the

To obtain the eigenvalues and eigenvectors of Eq. tra
(10), we substitute pho
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FIG. l. Normalized gain Re(u) vs phase-mismatch factor IC

calculated from Eq. (12) for X=0. Solid (dashed) curves: cir-
cularly (linearly) polarized pump, with sample polarizations
given for each. Unpolarized-pump solutions (u) coincide with

those for x y and + +, as shown.

circularly polarized (+), the full gain occurs at the
phase-matching angle with the Stokes light left circular-
ly polarized ( —). (Note that go is the resonance
Stokes-amplitude gain for the +- —transition. ) The
+ + transition (m =0) has zero gain, however, be-
cause of parametric gain suppression associated with the
allowed Stokes-anti-Stokes coupling. For light with a
coherency matrix which corresponds to equal amounts of
left- and right-circular polarization, e.g. , linearly polar-
ized or unpolarized light, the gain is zero for all the pho-
nons, i.e. , we have complete parametric gain suppression.
It is apparent that the gain varies continuously between
its high value and 0 as the polarization is varied between
these two limits, e.g. , for either elliptically or partially
polarized light.

Far from phase matching we must diagonalize D.
Consider the case X =0, which leads to the highest gain.
We find that for circularly polarized (+) pump light the
three eigenvalues are u =1, —,', and 0; the first two eigen-
values correspond to circularly polarized ( —) and (+)
Stokes light, respectively. For linearly polarized light,
say along x, we find instead u = 3, 2, and 0; now the
first two eigenvalues correspond to Stokes light linearly
polarized along x and y, respectively. As expected, these
are precisely the relative gains which would be predicted
from the ratios of the spontaneous rotational Raman
cross sections. ' ' For unpolarized light we obtain
u = —,', —,', and —,'. Evidently, far from phase matching
unpolarized light is automatically "decomposed" by the
rotational Raman efI'ect into two mutually incoherent
circularly polarized components, each with half the total
intensity; this yields the larger eigenvalues of —,'. OA

resonance (X&0) all the above results apply, except that
each eigenvalue is multiplied by a factor of (1+iX)

We return to the general solution of Eq. (12) for arbi-
trary values of K. In Fig. 1 we have plotted the normal-
ized gain Re(u) for a linearly polarized, circularly polar-

PHASE-Ml SMATC H FACTOR K

FIG. 2. Maximum normalized resonant gain vs K for vari-
ous pump polarization ellipticities. The quantity 6 indicates
the ratio of the minor to the major axis of the polarization el-
lipse.
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FIG. 3. Maximum normalized resonant gain vs K for vari-
ous values of the parameter a =C++/(C+ ~+ C —) of the par-
tially polarized pump laser.

ized, and unpolarized pump laser, all on Rarnan reso-
nance (A. =0) and with I) ((rup. The positive (negative)
branches are predominantly Stokes (anti-Stokes) roots
when K~O, and correspond to amplification (attenua-
tion). The plots show that the transition between the
phase-matched and unmatched regimes occurs around
A =1, as expected. Note that no root crossings occur ex-
cept at K =0; thus, for a linearly (x) polarized pump the
dominant root corresponds to parallel (x) Stokes polar-
ization for all values of @&0. The plot for an unpolar-
ized pump shows the maximum gain to be smaller
than for a linearly polarized pump throughout; indeed,
the larger unpolarized-pump eigenvalue is identical
throughout with that for x y, while the smaller is
identical with + +. We remark that in view of Eq.
(1) an unpolarized multimode laser may be viewed as a
type of single-mode laser whose polarization is modulat-
ed on a time scale short compared to the phonon lifetime
I '; our result should apply to any such arbitrary modu-
lation.

Figures 2 and 3 give plots of the maximum gain versus
A for various pump polarization ellipticities and degrees
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of polarizations, respectively. The gradual transition
from large helicity (circu]ar) to small he]icity (]inear,
unpolarized) is noteworthy.

In Fig. 4, we plot the maximum gain as a function of
frequency oAset X for various values of K, unpolarized
light, and 0 «cop. For small K the maximum gain
occurs near X =1, i.e. , half a linewidth oA resonance.
This result is similar to that obtained by Shen and
Bloembergen in their scalar theory.

We note that for backward SRS the Stokes-anti-
Stokes coupling plays a negligible role, since K becomes
very large. Thus backward SRS is characterized by the
relative gains obtained above for large K.

The authors are grateful to M. Feld for helpful criti-
cism. This work was supported by the U.S. Ofhce of
Naval Research.
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