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Monte Carlo Calculation of Lattice QCD with Exact Treatment of Dynamical Quark Loops
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We study the effects of Wilson fermions in SU(3) lattice gauge theory by an algorithm considering
the fermion determinant exactly. We use lattices of size 4 X2 and 4". A comparison is made with the
outcomes of fast approximate algorithms of the bush-factorized type. Our results point to the oc-
currence of a phase transition near P=5.3 and x. =0.14. We discuss the relation of this phase transition
to that observed recently with the Kogut-Susskind —type fermionic action.
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At present Monte Carlo simulations are the only avail-
able mathematical tool for a quantitative study of non-
perturbative phenomena in QCD. The investigations,
however, have to cope with the enormous computational
expenditure associated with the appearance of the fer-
mion determinant in the partition function. This highly
nonlocal object may be handled on diA'erent levels of so-
phistication which are as follows: (a) It is ignored
("quenched approximation"), (b) it is taken into account
approximately, and (c) it is considered exactly. Exact-
algorithm calculations have up to now been done only for
Kogut-Susskind fermions. '

We present in this paper the first results from an
exact-algorithm treatment of QCD with Wilson fer-
mions. Present-day computer resources limit this kind of
investigation to lattices of rather modest size such as
4 &2 and 4, which have been chosen here.

One of the main purposes for working out exact algo-
rithms which are free from any bias is to obtain data
which can serve as a standard for the check of approxi-
mate algorithms for systematic errors. Consequently, as
a part of our work we compare them to the results of re-
cently proposed approximate methods of the so-called
"bush-factorization" type.

A second domain of interest is the study of the region
toward small quark masses, which is not easily accessible
within an approximate algorithm. In particular we want
to know if in the approach to the region of light quarks a
phase transition would occur as has been observed for
the case of Kogut-Susskind fermions.

The system is described by its partition function,

Z =Jl aUexp[ —SvM(U)] {detW(U) j,
for f flavors (f=3 in the simulation here), where for the
Yang-Mills action S~M we choose Wilson's plaquette ac-

tion, SvM = —(P/3) +Re(TrU~), while the fermion ma-
trix is W=I —tcg, with hopping matrix

The Monte Carlo treatment consists of building up a
Markov chain: An old field configuration {Uj is replaced
by a new one {U+AUj according to the probability mea-
sure exp( —ASvM)p, where

p = {detW(U+ hU)/det W(U) j

= {det(I+ W 'AW)jf.

As updating strategy we have chosen the "hypercube
updating. " We update every link of a fixed four-
dimensional unit hypercube five times with ten Metropo-
lis hits before proceeding to the next hypercube. For
each hypercube we first calculate the required elements
of W '

by the conjugate gradient/residual technique
with preconditioning (using the matrix I+ tcg for the ap-
proximate inverse). The iterations begin from a starting
vector obtained approximately with the help of the hop-
ping parameter expansion (HOPE). We then renew the
elements of 8' ' corresponding to the hypercube using
Woodbury's formula. We discuss the details of the
algorithm and the error propagation analysis else-
where. '

The two methods of approximation which we compare
here with the exact method are the "bush-factorized
Metropolis algorithm" and the "bush-factorized noisy
algorithm. " Both of them are based on the pseudofer-
mion technique ' " in which we express p by
((exp( —ASpF))) I . ' Here ASpF is the change of the
pseudofermionic action Spq under the updating and
((. )) stands for the average with respect to the distri-
bution exp( —SpF). Upon updating of a set ("bush") of
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nontouching links the total change of the action is given

p~ w ereh 5 denotes the individual
change attributed to the single in j. e
tion consists of replacing p by a factorized one, i.e. ,

((Q, p( —~,s,„)))-Q (( p( —A 5 „))).
I d t g a bush, one prepares ne g gw au e fields ac-n up ain

with thecording to yM an5 and then accepts the change wi

robability in the framework of either the Metropo is a-

The second method is much faster, althoug i

has an "artificially" increased rejection rate, w ic
to more corre a ion el t b tween sweeps. Since the approxi-
mation error can e cob controlled and since the step size is

h th d is very successful; it allowednot restricted, this me o i
3 . 6us e, to see hadronization eAects on a 8 x4 lattice.us, e.g. , to see a roniza i

ive our results for sev-In the following we want to give our

able uantities plaquette average E„i~eral measura e qua: e E i

= —,
' (Re(TrUz)1, Polyakov line I = —, (Re TrU, , g u

r E = 3pIE&1q(timelike) —E iq(spacelike)I, an

Th lt of our investigation on the 4 x a ice
a selected set of parameter values aroun

e I. In addition to thex =0.12 are presen'ed in Ta e . n a i i

exact- an t e approxim
m thelis) algorithm ata we avh d have included the results from e

t e lowest- secon-d-)quenc e ah d approximation and from t e
er HOPE. We find good agreement betweeween the ex-order H ~ e

Another observationact and the approximate methods. Anot er o
that for large and intermediate q uark masses the dom-is a

PE. This is, how-

a
ft ts are already given by HOPE.

ever, speci c or afi f lattices with time length N, =, w

have a second-order term in the H PE.
for the 4 lattice have been obtained at

=5.3 and x. =0.13, 0.14, and 0.15. In Fig. a we

TABLE I. Plaquette average, Polyakov, gkov line, and gluon ener-
density obtained by difterent methods on a 4 x2 latticegy ensi y o

d nditions. The lattices are heatedwith antiperiodic bounuary con i ions.
first with pure ang- iY -M lls action for several thousand sweeps;

f h f ions and very fast equilibration, upafter turning on o t e ermion
rin . The iven errors areto 200 sweeps are done for measuring.

d for the approximate method (bush-statistical ones an or e a
estimated) sys-factorized Metropolis algorithm) include the (estimate sys-

tematic errors, too.
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onte Carlo runs on a 4 lat-4FIG. 1. Plaquette averages of Monte
a the exact method andt z =5.3 vs sweep number, from a

ith I () th i 1 tio(b) the bush-factorized noisy algorithm. n

t re=0. 14 starts with a ang- i st rc= . Y -Mills equilibrium configuration
=0 . h h 240th configuration of theand at K= 3 and 0.15 wit t e

e la uette aver-rc=0. 14 samp e. e1 The arrows in (a) show the p aq
rithm attained b the bush-factorized noisy algorithm

.13 and 0.15, where the value or K =K =0.13 an
on a 8 x 4 lattice and thereforethe time-space plaquette on a x a i

represents a lower bound for e p qr the la uette on a 4 lattice.
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F I G. 2. Pol kyakov line I on a 4 lattice at P =5.3 and4

&=O. l4 vs sweep number (obtained by the exact algorithm) (L
means average over Polyakov lines in all space-time directions).
The arrows show the two corresponding values of L obtained
by the bush-factorized noisy algorithm.
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have plotted the exact-algorithm data for the plaquette
average as a function of sweeps at K =0.14, where every

atum point stands for an average over eight sweeps.
e see an indication that the system jumps between two

different levels during sweeping. We also took data at
re=0. 13 and 0. 15 st r, s arting from the same configuration
(the 240th of our ted=0. 14 sample) Thpe ~ ey seem to con-
verge to values near the lower and th e upper evels atl l

x=0.14, respectively. This is further support for the
conjecture of two-phase coexistence. For further check,
we give in Ftg. 1(b) the corresponding results for p=5.3
and x=0.14 from a bush-factorized noisy calculation.
We see quite a similar behavior which, however, needs
many more sweeps to show up. e agreementTh
between the data obtained by the exact and bush-
actorized methods on the 4 lattice is good.

In Fig. 2 we present the values for the Polyakov line
an in Fig. 3 the results for the fermion cond t .con ensate.

gain t e individual behavior of these quantities as well
as their strong correlation among each other and with
the plaquette average clearly indicate the presence of a
two-phase structure. Although (Py) calcul t d th h

i son- ermion action is not an order parameter for the
c iral-symmetry breaking, it is related to the behavior of
the fermionic determinant through

d [In (det W) ]/dt's = (1 —(Py) )Tr(l).

Hence Fig. 3 suggests different eigenvalue distributions
of W within the two phases.

Recently another group has claimed to see "clear evi-
ence of chiral-symmetry transition" 4 lon a attice from

an exact-algorithm treatment but with Kogut-Susskind
fermions. The hs. ey have found a two-phase structure in the
behavior of the Polyakov line and of the fermionic con-
densate at p =4.9 and I =0 025 b ut not any more at
m =0.05 wh.05, where m, is the quark mass in lattice units.
Do both investigations indicate th he same p ase transi-
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(results are obtained by the exact algorithm).
all

tion? Notice that in our case the chiral symmetry is ex-
plicitly broken by Wilson's fermion action. Furthermore
our quark mass is very probably much higher. But the

R f. 4. W
behavior of the Polyakov line is very similar t h

e therefore cannot exclude the possibility that
we observe the same transition as in Ref. 4 which then

appears at much higher Wilson fermion mass than
Kogut-Susskind fermion mass. In this case, however, the

ynamical origin of the transition is not clear to us and
needs further investigation.

Finally let us mention the performance of our exact
algorithm. One sweep on a 4 lattice takes on a VP200
roughly 10, 13, and 18 min for K =0.13, 0.14, and 0.15,
respectively, and half of these on a VP400. The exact al-
gorithm has been run on the VP200 and VP400 at

ujitsu Ltd. and the Cray 1M at Zentrum fur Informa-
tiontechnik Berlin Z I B, while the approximate algo-
rithms have been run on the Cray 1M at ZIB and the
Cray XMP's at Cray Research.
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