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Spontaneous Generation of String Tension and Quark Potential
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The quark potential of a string with extrinsic curvature is calculated in the limit d ~, via a saddle-
point approximation. The saddle point has an anisotropic gap matrix A,

' (aug" in contrast to an
unjustified assumption in all previous discussions). The anisotropy enters the nonleading—(d —2) trc/24R part of the potential. c is calculated, the entire potential is plotted, and simple analytic
expressions are found which approximate all quantities involved very closely.

PACS numbers: 11.17.+y, 11.60.+c, 12.40.Lk

Recently, Polyakov and the author' have independent-
ly pointed out that various aspects of string fluctuations
call for an additional term in the action. It is proportion-
al to the square of the extrinsic curvature

Atc = „d (JgK

where g;i is the intrinsic metric, r);x"r)ix", associated
with the surface x"(g') (i =0, 1), and K—:(D x)
(D; =covariant derivative). Even though the ensuing
higher-derivative theory seems, at first sight, to be beset
by even more ghosts than the original Nambu-Goto
string, the Euclidean formulation has a very attractive
feature: It shares with quantum chromodynamics not
only the infrared confinement but also the ultraviolet
freedom. The theory has therefore become a new focus
of interest.

A particularly important quantity of any string is the
static quark potential t (R) since this can eventually be
compared with experimental meson spectra. First at-
tempts to calculate it were undertaken by various au-
thors, who used the techniques by which Alvarez
found correctly the potential of the ordinary Nambu-
Goto string. The calculation involves a gap matrix in
which the energy is to be extremized. In Alvarez's case
it was found to be proportional to g'~. We shall call this
situation isotropic. The isotropy of Alvarez's k'~ led all
previous authors to assume an isotropic X'~ also for a
string with curvature. This assumption, however, is not

justified. %'e shall see that the anisotropy is quite large
and influences the potential drastically. In particular,
the nonleading I/R part of the potential can change sign,
depending on the amount of extrinsic curvature in the to-
tal action.

Consider first a surface which has no Nambu-Goto
tension at all and is governed completely by our action
(1). Since K involves four derivatives of x"((), its ffuc-
tuations are so violent that the theory generates itself a
mass spontaneously, to be called X' . As a function of
an arbitrarily chosen mass scale p this has, at the one-
loop level, the renormalization-group- invariant form
(d =dimensionality of space)' X~p exp( —const/a). It
plays the role of the dimensionally transmuted coupling
constant associated with the dimensionless couplings a.
The mass X' gives rise to a spontaneous string tension
and causes permanent quark confinement.

It has often been stressed that the spontaneous genera-
tion of a length scale in four-dimensional non-Abelian
gauge theories can be viewed as an analog of a similar
process in the two-dimensional nonlinear cr model. Also
there, the theory starts out massless. Its action is [n"
=(n', . . . , n~)]

d'g[(6;n)'+) (n' —1)].
2g J

For N ~ 3, violent fluctuations prevent the massless
modes from surviving. They acquire spontaneously a
mass which reads, in the renormalization-group—
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invariant form (at the one-loop level),

2 —4zig(p ')

It now appears that the analogy is much closer than
initially thought. Indeed, let us write the action (1) in

the Gauss gap where x"(")=(g, g', x,x, . . . , x '),

„d'pig [(D, r, )'+&"(r,r, —g„+S;,)], (4)

where r,' =rl;x' (a =2, . . . , d —1) are components of the
tangent vectors of the surface. Apart from the presence

of a fluctuating g;~ and the i indices of t;, this action is
practically the same as (3). It is therefore not surprising
to find the same type of spontaneous mass generation.
As in the (T model, the quantity X'~ acquires a
renormalization-group- invariant nonzero value

~ /=~~/= p exp[ —[2/(d —2)] [4z/a(/ 2)]+ I). (5)

This is the signal for the spontaneous generation of a
string tension.

Consider the action (4) and integrate out the x' fluc-
tuations. Assuming a flat intrinsic geometry we make
the Ansatz g/ =p;6;, and find

Afl = J d $(pop|) In(q +p'x' q;q, ) — x' (g/ —6/)
2/r

' 20
(6)

[ ith:—2a(d —2)] to be extremized in X'/, pp, p~, where

we have set qp=kp/ Jpp, ql =—kl/ Jp~. These are intrin-
sic momenta. For a finite extrinsic (=physical) distance
R,„, between the quarks, q ~ takes the values n/r/R

(n =1, . . . , ~) where R =Jp~R, „, is the intrinsic dis-
tance between the ends. In the following we shall as-
sume k'/ to have the general form X' =X'g' =k'/p;6'.
The infinite system is isotropic, X =X' =X for R
and the quantity in brackets in (6) becomes

d
(2/r) ' In(q'+iq 2)— 1 ~0

2a 2e po
+

Pl

The first two terms can be regularized by working in

2+e intrinsic dimensions. Absorbing the 1/e infinity as
usual in 1/a, we can introduce the dimensionally
transmuted coupling constant k and write the bracket as

f = =fp(g) —X/4/r+ (1/2a)(ko/po+Xl/pl), (7)

where fo(X)—:—(k/4/r) [In(k/k) —I ]. The multiplicative
renormalization of o. is compensated by a corresponding
one of po, pl and xo, xl so that all expressions are finite.
Extremization of the action

A fl 2 (d —2)R,„tPaxt(POP& ) f

which is solved by X =k,—:ke'. Here we have introduced
a parameter v, to be called "normality, " so that MN~—:(K/4')e'v It measures . the relative amount of MNo
with respect to the spontaneous M, z =k/4~ The to.tal
string tension is

d —2fz=
tot

2
(1+v).

2 4z

Thus physics requires v ) —1.
In a finite system, we set k —= (Xo+X

~ )/2, 6= 4.
~—Xo)/2k and find that f is to be supplemented by

in pp, pl, k gives f =fp and X =X. The R = ~ values
of po=pl=@ sati«y I/up=I/4/r. A further finite renor-
malization of k, X by p makes po pl 1 for R
With k =X&0, the surface has acquired spontaneously a
string tension

M,'p =
2 (d —2)k/4/r.

An extra Nambu-Goto action MNo fd ging adds to
f a constant MNo =[2/(d —2)]MNo. Then the ex-
tremization of Afl in po, p~, k gives f =2MNo+fp
with a gap equation

M /X —ln 4,/X)/4/r =0

XR
4~' " ~R'

2 4+ g (n'+X~) '"—n—~R

~R n=l 2fl

2 ——g K ) (2nz~ / n)/n4 (8)
4 t n=l

[with R = 2/re &/p ~/2
y = 0.577 21 5 =Euler's number, X~ =kR //r, K~ (z) =modified Bessel function], due to the

finite size of the system, plus a term

~f an g [A +A —
(n 2+g ) I/2 n] +4 h, X

~R n=l Sz'

with

[n 2+ 1 g (I P) [I ~ (I 4zn 2/g (I $) 2) I/2]( 1/2
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due to the anisotropy of the gap. The total action is [(d —2)/2]Re„,P,„, times

a= (ppp~) [f +Af +df'"+ (I/2a)(ko/po X~/p~)]. (10)

g~f an

+4 g Kp(2+A. ~ n)+
n=l r)k R, h

Extremization in po, p], X, 6 gives the gap equations

—
1 v —ln =0,

1 1
$ I + v + 47' fR v

1 + 9hf
4& 1

—6
=0, (12)

and the equations for po, p]

p
~ [(1 + v) (1 + g)] (4z/p)ft t p) = [( 1 + v)(1 +p)] [2+2vk„/X —(4z/X)ft

where

ftnt: [2~No +fo(~) +~f +~f "]extremnm =
4z

1

3~R
(14)

so that a =(pop~) '~ f„,. When performing 6/Bp~ we

have to remember that p~ occurs in kR =XR /
~' =kR,'„,p)/zr'.

The solution of these equations is quite simple. We
take 6 =0 and find for various X~ the corresponding
value for k from Eq. (11). For this we calculate a first
6~0 from (12). This is reinserted into (11) to obtain an
improved value of X. After a few iterations, the pro-
cedure converges. The quark potential is v = [(d
—2)/2]R, „ta with R,„,=Rp~ '~ =x(k/X~p~) '~ . In
Fig. 1 we have plotted the reduced potential

as a function of R,„,/R, „, , where

R„,,—:2ze "[X.(1+v) ]

=e "[(d—2)z/2~ ] '

! R/R. For comparison we show as dashed lines an ap-
proximate solution of Eqs. (11)-(14)which arises when
we drop the Bessel functions (they are exponentially
small for large R), and when we approximate bf'" by
the leading terms (X/4x)(6/A. JP —6 /4). Then the equa-
tions can easily be solved analytically. The approxima-
tion is seen to be very good. The dash-dotted lines are
the corresponding curves which would result under the
unjustified assumption 6=0. Actually, in this case, the
approximation of dropping the Bessel functions is so
good that the curves cannot be distinguished on the plot.
They can easily be calculated in closed form. For vari-
ous k/X we have

Z~ = [(X„/Z —1)v —In(kjk, )]

(where X,/X =e'), and

f ' =(X/4z)[vk, /k+ I —l —I/3X ],is the natural length scale of the system, for v=0 (corre-
sponding to a purely spontaneous string) (u is normal-
ized to behave asymptotically as R,„,/R, „, ,+const). pp ~' =(1+v) '[vX,/X+ I T-X~ + I/3XR].
We have also displayed the gaps X,kp, X~ as functions of

The quark potential is given by the simple expression

c
' =(R«,/R«&, )(X/X„) [vk,/k+1 —kR

' —I/3k&] ' [vX,/X+ I+XR ' + I/3k~] (Is)

where

R,„,/R, „, ,= (R/R) [e'(I + v)/p~] '

=[~ ~ (1+v)+]'"e"/2

For v ~, this expression goes smoothly over into the
Alvarez potential of the Nambu-Goto string (shown in

Fig. 1).

hv = —[(d —2)/2] (x/12R, „,)c,

c =1 —2v/3(1+ v) —12/(3+2v).

Thus, while the pure Nambu-Goto string (v=~) has
c =1, this parameter decreases for less and less normali-
ty and changes sign at v= 5.1031. At this place it is
equal to the c value of the so-called Ramond string.
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For a purely spontaneous string, v=0, c is equal to —3.
Let us conclude by mentioning that anisotropic gaps

have been known to be of practical importance in

superfluids with a tensorial order parameter.
This work was supported in part by Deutsche
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FIG. 1. The reduced quark string potential v for a purely
spontaneous string (v=0), as a function of R,„JR,„, , with the
scale explained in the text. The dashed curve is a simple but

quite good approximation. The curves starting from the top
left are the gaps X,ko, kl, as functions of SR/R. The dash-

dotted curves are the corresponding solutions assuming isotro-

py in which case we have found a closed-form approximation
which lies right on top of the exact one, on the scale of the

figure. For v ~, the potential approaches that of the pure
Nambu-Goto string which we have also plotted (dash-starred
line).
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