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Oscillatory Instability in the Dynamics of Incommensurate Structures
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We report the discovery of an oscillatory instability in the dynamics of incommensurate structures.
The oscillations survive the thermodynamic limit. The instability occurs for both long- and short-range
interactions. The frequency and stability of the oscillations are studied.

PACS numbers: 72.70.+m, 72. 15.Eb, 72. 15.Nj, 72.20.Ht

Quasiperiodic or incommensurate systems have at-
tracted considerable interest in a wide variety of con-
texts, including adsorbed layers, structures of solids, the
onset of chaos, and localization (see, for example, Refs.
1-3). They also exhibit a variety of the nonlinear prop-
erties of sliding charge-density waves (CDW's), includ-
ing dc characteristics, ac response, ac-dc interference,
and electromechanical properties.

We report the discovery of a new phenomenon, a bulk
oscillatory instability, in the dynamics of sliding incom-
mensurate structures; and we study some of its proper-
ties. The existence of bulk oscillations is surprising since
the general belief has been that the phase of any oscilla-
tions in a sliding noncommensurate system would vary
through the sample, thus cancelling the oscillations in

the thermodynamic limit, as indeed occurs in perturba-
tion theory. The instability is therefore breaking the
translational symmetry of the bulk noncommensurate
system. Finally, in the light of this new result, we dis-
cuss the long-standing problem of oscillatory voltage
fluctuations in CDW conductors.

The first model we consider is one for whose dc prop-
erties an exact solution is available, namely, a set of N
particles, all interacting equally with each other, subject
to a pinning force P(x) and a uniform force F:

U, =P (Hj + Ut ) + (U) —
U) +F

Here H is the lattice spacing; Uj is the displacement of
the jth particle (so that HJ'+ U~ is its position);
(U) =N 'g~, Ut; P(x+2tr) =P(x); and we study the
limit N ~ and H/2tr =an irrational. Because CDW's
are overdamped, ' purely relaxational dynamics is
used. This model can be thought of as a mean-field
theory for the incommensurate chain. Following a sim-
ple construction' it can be shown, however, that it can
also be considered a mean-field theory of a CDW subject
to a spatially random distribution of identical pinning
centers. (With infinite-range interactions, the distinction
between the quasiperiodic phase variable Hj and a com-

This solution was used here as the initial configuration
for a numerical integration of (I), with N particles, and
it was checked that the numerical procedure was stable.
By addition of any small perturbation the dynamic sta-
bility of this solution can be studied. The voltage (F)
versus time plot in Fig. 1 shows the result of such a
study. The results presented in Figs. 1 and 2 are'" for
P (x ) =8 sinx+ 12 sin4x.

It is immediately apparent that the dc solution is
dynamically unstable, with oscillatory fluctuations grow-
ing exponentially at first and then saturating. The ap-
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FIG. 1. Voltage vs time for mean-field theory, with v =10.
Note the exponential divergence followed by saturation,
characteristic of an instability in a nonlinear system.

pletely random phase variable PJ is irrelevant. ) It has
also provided accounts of ac-dc interference experi-
ments in the CDW compound TaS3, and the scaling of
field- and frequency-dependent conductivities.

The exact dc solution of this model is U~(t) =vt
+g(Hj +vt) where g(x) is the solution of the bound-
ary-value problem

v(1+g') =P(x+g) —g, g(x+2tr) =g(x).
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FIG. 2. Frequency vs velocity for the Frenkel-Kontorova
model Th. e segments satisfy v/co=(H/2z)" where n =2 for
the largest segment and cascades through n =1,2, 3,4 as the ve-
locity is decreased further.

pearance of harmonic content in F(t), as well as satura-
tion, are both due to nonlinearity and they are seen to
occur at the same time, as expected. Time series ob-
tained with N =144, 233, and 377 are essentially indis-
tinguishable. Thus the results shown in Fig. 1 describe
the thermodynamic limit and are not a finite-size eff'ect.
Moreover, a finite-size eA'ect would not be expected to
show the exponential divergence seen in Fig. 1, which is
instead the signature of a dynamic instability.

In addition, we performed a stability analysis of the dc
solution to (l) in the limit N ~. CDW experiments
are often current driven, and so we considered (l) in the
presence of "normal electrons" by keeping fixed a total
current, v +a„F, where o.„ is the conductivity of the
linear, normal channel. It can be shown that, for any
pinning potential, oscillations at (complex) frequency co

will occur under conditions of fixed total current v+ a„F
only if co is a root of o(ro) = —cr„where cr(co) is the
linear response function of the sliding structure. Thus,
while an instability under conditions of fixed voltage F
would correspond to a pole of o crossing into the upper-
half complex co plane, the instability shown in Fig. 1, at
fixed current v, corresponds to a zero of o. crossing into
the upper-half plane. We solved the linear-response
equation and obtained the zeros of o for diA'erent veloci-
ties. At v =10 the result was a normal-mode frequency
whose real and imaginary parts both agreed precisely
with the diverging oscillation seen in Fig. 1, confirming
that it shows an oscillatory dynamic instability inherent
in the mean-field theory of the dynamics of incommensu-
rate structures.

We calculated the complex normal-mode frequency at
difterent velocities. As the velocity decreases below 11,
the zero moves into the upper-half complex plane, signal-
ing an instability of bifurcation. There is thus a critical
velocity v, above which the dc solution is stable (oscilla-
tions decay) and below which the oscillations persist.

The instability was observed for a wide range of o.„, with
i, decreasing as o„ increases. '

The solution of the linear fluctuation equation at v„
6U/r =rl(Hj+tr)e ' ', provides some rudimentary in-
sight into the origin of the instability. The exact solution
of the dc motion showed that there are values of the
pinning potential (essentially the peak values) which a
locally stable static solution avoids by having discon-
tinuities in the function g(x) defined above. Static solu-
tions do exist with particles in these regions, but such
solutions are unstable. A sliding system, however, must
have particles in these regions and a continuous g(x),
with dg/dx sharply peaked in these regions for small v.
We find that the unstable fluctuation g(x) has

~ g ~
larg-

est just where dg/dx is peaked. Thus the oscillatory in-
stability of the dc solution may be in some measure a dy-
namic consequence of the existence of unstable static
states,

To see whether the oscillatory instability exists in
finitely coordinated systems we studied a minimally co-
ordinated system: an incommensurate chain with only
nearest-neighbor interactions, '

U =P(Hi+Ui)+Ui i
—2Ui+Ui+i+F

The incommensurate chain has been shown to give an
account of the difference between the ac and dc interfer-
ence properties of NbSe3 and TaS3. A previously ob-
tained" dc solution to (2) was used as an initial
configuration in a numerical integration with N particles.
Increasing N sufficiently produced identical plots, ensur-
ing that the results represented the thermodynamic limit.
Difterent pinning potentials were studied. So long as
P(x) produced a threshold, whether or not P(x) con-
tained harmonics, resulting voltage-time plots showed
precisely the exponential instability, followed by satura-
tion, that was seen in Fig. 1 for the mean-field case.

Thus the instability occurs at coordination number
infinity and two. It is therefore expected to occur in in-
commensurately pinned systems at all intermediate coor-
dinations in one, two, and three dimensions.

The oscillation frequency as a function of v, for
nearest-neighbor interactions and the same P(x) as in
Fig. 1, is shown in Fig. 2 and has some interesting
features. It is predominantly linear. Further, although
the large-v limit has transients with the trivial frequency
co=v which would be exhibited by a single particle in
P(x), once the instability takes over (v ~ 9) a new
characteristic frequency and length appear which are
determined not only by P(x), but also by the sliding
structure itself. In the large linear region in Fig. 2,
t/co=(H/27r) . That is, the oscillatory instability re-
veals the length scale H provided by the lattice spacing,
which is the length scale corresponding to the wave-
length of a CDW.

Further, as v is decreased, there are a number of first-
order transitions, where v/co changes abruptly, being
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given by (0/2rr)", n =2, 1, 2, 3, . . . as the velocity is de-
creased.

The properties of the Frenkel-Kontorova model [Eq.
(2)] have attracted a great deal of attention (see, e.g. ,

Ref. 2). It is now clear that its dynamic properties are
considerably richer than previously realized.

Turning to CDW conductors, the dominant source of
pinning is believed to be a random potential due to lat-
tice defects. While Eq. (1) is also a mean-field theory of
random pinning, we do not yet know whether a bulk os-
cillatory instability also occurs in systems with random
pinning and short-range interactions.

No critical velocity, v„has been reported in the exper-
imental literature. Some experiments in the time
domain have, however, revealed transient oscillations. '

While the existence of transients has no clear explana-
tion within the finite-size ' ' or contact ' theories, a nat-
ural interpretation in the present context is that in these
experiments t. & v, so that fluctuations oscillate but de-
cay.

The origin of CDW voltage oscillations remains an

open question. The unexpected observation of bulk oscil-
lations in models which have exhibited a wide variety of
other properties of sliding CDW's may be the basis for
the answer, or merely a tantalizing coincidence.

In conclusion, we have reported the discovery of new

phenomenon —an oscillatory instability —in the dynam-
ics of incommensurate structures.
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