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Green's-Function Approach to Linear Response in Solids
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We present a new scheme to study the linear response of crystals which combines the advantages of
the dielectric-matrix and supercell ("direct") approaches yet avoids many of their drawbacks. The nu-
merical complexity of the algorithm is of the same order as that of a self-consistent calculation for the
unperturbed system. The method is not restricted to local perturbations as is the dielectric-matrix one
nor to short wavelength as is the direct one. As an application, we calculate the long-wavelength optical
phonons in Si and GaAs, both transverse and longitudinal, using norm-conserving pseudopotentials, and
without any use of supercells.
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The availability of' accurate first-principles techniques
to study the electronic structure of crystals has renewed
the interest in the study of their response to external per-
turbations. These include impurities and phonons, ' as
well as macroscopic perturbations such as homogeneous
strains or electric fields.

Two approaches are currently in use to cope with
external perturbations in periodic systems. In the first
one, which is often referred to as the "direct" method,
the perturbed system is handled on the same footing as
the unperturbed one, and the response is obtained from
the comparison of the properties of the two systems. In
the second approach, the response to perturbations is
given by the inverse of the dielectric matrix (DM) '

which is obtained from the eigenfunctions and energy
levels of the unperturbed system. The relative merits of
the two methods can be summarized as follows.

The direct approach allows us to study both linear and
nonlinear effects; linear effects, however, are not directly
accessible, and some interpolation scheme must be used
to extract them. This method is rather straightforward
computationally; in fact, total-energy computer codes
written for perfect crystals can be easily extended to deal
with supercell geometries which allow an explicit ac-
count of this perturbation. As a consequence, no partic-
ular problem arises when the perturbation is described
by a nonlocal potential. Another advantage is that, since
only the knowledge of valence states is required, the
self-consistent calculation can be carried out by efficient
iterative-diagonalization or global-optimization tech-
niques. These techniques allow us to keep the numerical
complexity of the problem at the level of —MN
floating-point operations (FPO), where M is the num-

ber of electrons per unit (super)cell, and A' is the size of
the electron-wave-function basis set. The main limita-
tion is that, in order to maintain the numerical effort at a
reasonable level, only those perturbations which can be
described by supercells as small as a few elementary cells
are accessible to this technique. In simple semiconduc-
tors, long-wavelength perturbations such as longitudinal
phonons and/or macroscopic electric fields have been re-
cently treated within the direct approach; the price to
be paid, however, is to simulate their effect by use of
large supercells. Large supercells are a source of numer-
ical errors and constitute a severe limitation in the appli-
cability of this method to systems different from the sim-
plest semiconductors.

In the DM approach only quantities from the unper-
turbed ground state are necessary to calculate the
response. As a consequence, the method is not restricted
to perturbations of any given periodicity, since the calcu-
lation of DM's at any point of the Brillouin zone (BZ) is
not much more complex than that at the I point. Of
course, only linear effects are accessible to this tech-
nique: This is not an inconvenience in many instances,
such as, e.g. , lat tice dynamics, where experimentally
measured quantities can be exactly expressed in terms of
linear-response functions. The real limitation of this ap-
proach is that the calculation of dielectric matrices re-
quires cumbersome summations over conduction bands
at several k points in the BZ. Furthermore, the fact that
the whole spectrum of the unperturbed self-consistent
Hamiltonian is needed makes iterative techniques to
diagonalize matrices useless, and forces us to use
more conventional tridiagonalization-bisection algo-
rithms which require a number of FPO's —N . The
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subsequent inversion of the DM needs then an analogous
numerical work. Since modern norm-conserving pseu-
dopotentials are relatively hard core, ' the number of
plane waves necessary to describe even a simple semicon-
ductor is as high as some hundreds: This implies that a
technique allowing us to keep the numerical labor at the
level of —N FPO's would be of extreme value. Anoth-
er drawback of the DM approach is that, in order to
study the response to one particular perturbation, one
has to calculate large DM's which contain far more in-
formation than physically needed. Yet the information
contained in conventional DM's is not enough to study
non local perturbations, and one should, in this case,
resort to even more complex response functions.

In this paper we show that the advantages of the above
two schemes may be combined in a new method which is
the solid-state analog of the self-consistent Sternheimer
equation for atomic polarizabilities. '' Its main features
are the following: The response is studied via perturba-
tion theory as in the DM approach; however, the re-
sponse to the total (bare+electronic) potential is not ob-
tained by inversion of DM's, but by iteration of the cal-
cu 1 ation up to self-consistency. The time-consuming
sums over conduction bands are avoided through a
Green's-function technique which keeps the numerical
complexity of the calculation at the MN level. The

method is not restricted to perturbations written in terms
of local potentials as is the case in the traditional DM
approach. This is of particular interest in lattice dynam-

ics, when norm-conserving potentials are used to describe
the electron-ion interaction. No use of supercells is

made, and the calculation can be performed, for pertur-
bations of arbitrary wavelength, with use of only valence

energy bands and wave functions of the unperturbed
crystal.

Within density-functional theory, ' the electronic
(number) density n(r) is determined by a one-body po-
tential, Vscp(r), which is the sum of the external poten-
tial acting on the electrons, Vb„,(r), plus an effective
electron-electron potential which depends on the density
itself:

VscF(r)

= Vb„,(r) + e J dr'+ v~c(n (r) ),
n(r')
r —r'

where the local-density approximation ' for exchange
and correlation is assumed. When a perturbation 6, Vb„, „,
is superimposed on the external potential, the self-
consistent potential is modified accordingly:
VscF VscF+~VscF If ~VscF is supposed to be
known, the linear variation in the electron density An is

easily obtained by first-order perturbation theory:

4 &v, k
I
e 'q+ "Ic,k+q)«, k+q I

A VSCF I v, k)

Vk~az c E, (k+ q) —E„(k)
(2)

where An(q+6) is the Fourier transform of An(r), V indicates the crystal volume, and v and c denote the valence and
conduction hands, respectively. Of course, Eq. (2) is analogous to the expression for the independent-electron polariza-
bility in the random-phase approximation given by Adler and Wiser. ' The input to Eq. (2) is obtained by our lineariz-
ing Eq. (1),

AVscF(r) =AVb.„,(r)+e &~ dr'+An(r)An(r') d v~g

Ir —r'I n =no(r)
(3)

where no is the unperturbed electron density. Equations (2) and (3) can be used directly to calculate the self-consistent

linear response to a given external perturbation, without inverting nor even calculating any dielectric matrix. Equation
(2) is of the same complexity as the evaluation of just one single row (or column) of a DM. In contrast to the DM ap-

proach, in the present scheme one calculates just one row of the matrix as many times as necessary to achieve self-

consistency. Since the number of iterations is usually far smaller than the dimensions of the DM (a few versus some

hundreds), the self-consistent approach is found to be much more convenient. We remark that exchange-correlation
elTects are easily and naturally treated through Eq. (3), while in the DM approach their inclusion further requires the

inversion and multiplication of large matrices.
The sum over conduction states appearing in Eq. (2) requires the calculation of the full spectrum of the unperturbed

Hamiltonian. This can be very time-consuming since the complete diagonalization of a matrix of order 1V necessarily
requires —N FPO's. In order to avoid such a sum, we write Eq. (2) as follows:

An(q+G) = —(4/V)gl, g,&v, k I e ' q+ 'P, Go(& (k))P AVscF I v, k), (4)

where P, is the projector over the conduction-state manifold, and 60 is the Green s function of the unperturbed system

described by the self-consistent Hamiltonian HscF To evaluate Eq. (4), we fu. rther rewrite it as

An(q+G) = (4/V)gl, g, (v, k
I
e ' q+ 'I v, k), (Sa)
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where

lHscF ~.«)~ I v, k& =P,&~scF I v, k& (sb)

In the literature, several algorithms are known to solve
iteratively linear systems which require a number of
FPO's proportional to the square of the size of the ma-
trix times the number of right-hand sides to be con-
sidered, whereas more conventional factorization algo-
rithms require a number of FPO's proportional to the
cube of the size of the matrix. Iterative algorithms to
solve Eq. (Sb) offer the further advantage that, in practi-
cal self-consistent calculations, a good guess of the solu-
tion is available from the previous self-consistent itera-
tion. We conclude that the self-consistent scheme pro-
posed here allows us to calculate the response of a crystal
to external perturbations of arbitrary wavelength with a
numerical effort growing as the square of the basis set
times the number of valence bands of the unperturbed
system.

Much interest has been devoted in recent years to the
ab initio calculation of the phonon spectrum of simple
semiconductors. ' So far, such calculations have been
performed either in the direct or in the DM approach.
One of the challenging features of phonon spectra is the
eftects related to the existence of a macroscopic electric
field in the long-wavelength longitudinal modes of polar
materials. In the DM approach, such effects can be re-
lated to the analytical properties of the dielectric ma-
trix' and dealt with directly. Unfortunately, the impos-
sibility of the use of norm-conserving pseudopotentials
limits the accuracy achievable by this method. Vice ver-
sa, nonlocal pseudopotentials are easily treated in the
direct approach, but difhculties arise because the poten-
tial associated with a homogeneous electric field does not
obey Born- von Karman boundary conditions. As a
consequence, only finite-q calculations are possible and
large supercells are needed to recover the q 0 limit.
Because of these difticulties, the theoretical results re-
ported so far for Si and GaAs are rather scattered. ' In
particular, several calculations gave a nonvanishing value
for the effective charge of Si and/or a nonzero value for
the sum of the effective charges in GaAs.

In the following, we present our results for the long-
wavelength optical phonons in Si and GaAs. The calcu-
lations are performed by our displacing one atom per
unit cell, and screening the bare perturbation along the
lines expounded above. Energy differences have been
calculated by our expanding the crystal energy up to
second order in the atomic displacement. ' Harmonic
forces could be obtained along similar lines. Effective
charges are obtained from the screened electric field in-
duced by the phonon. In GaAs this is done by separate
calculations of the response to the displacements of each
of the two atoms in the unit cell. Macroscopic electric
fields are treated in the very same way as in Ref. 3. '

The ionic pseudopotentials used here are the same as in

TABLE I. Calculated values of the macroscopic dielectric
constant, t.', transverse optic frequency, coTQ, longitudinal op-
tic frequency, mLo (THz), and effective charge, Zr*, in Si. The
number of special points for the BZ integration in Eq. (2) is in-
dicated. Experimental data as in Ref. 3.

10 points
28 points
Expt.

13.5
12.7
11.4

co rQ

15.4
15.4
15.5

~LO

15.4
15.4
15.5

ZT'

7x10
3x10
0

Ref. 3, for Si, and are taken from Ref. 10 for GaAs.
The kinetic-energy cutoffs for the plane-wave basis set
are 14 and 16 Ry for Si and GaAs, respectively. The as-
sumed lattice parameters are 10.26 and 10.50 a.u. , re-
spectively. Other technical details of the calculation are
as in Ref. 3.

In Table I we report the results of our calculations for
Si. The entries "10 points" refer to calculations made
using the (8,8,8) Monkhorst-Pack mesh for BZ integra-
tion, ' while the entry "28 points" refers to the
(12, 12, 12) mesh. The value of the macroscopic dielec-
tric constant coincides with the result of Ref. 3 obtained
by dielectric matrices and so does the transverse frequen-
cy previously obtained by the direct method. We refer to
Ref. 3 for a discussion of the slow convergence of t..
with respect to the number of integration points in the
BZ. We notice that the value obtained with 28 points is
within —0.5% of the converged value, while the value
with 10 points is —7% ofT. The slow convergence of the
screening of a macroscopic field also aA'ects the values of
the effective charges. These are zero as a result of the
acoustic sum rule (ASR)' which imposes a complete
screening of the bare ionic polarization. Since the con-
vergence of the macroscopic screening is very slow, it is
not surprising that the convergence of ZT is slow as well.
We conclude that, in order to satisfy the ASR, a high
number of special points is necessary.

In Table II, the same data are summarized as calcu-
lated for GaAs. As was the case for Si, the local-density
approximation predicts a value of dielectric constant
—10% too high with respect to experiment. A thorough
discussion of this partial failure of the local-density ap-
proximation is given in Ref. 3. The two entries cuLQ and
ruLQ refer to calculations in which the Ga and As atoms
respectively are displaced. Their values differ somewhat
when a "low" number of special points is used for BZ in-
tegrations, as a consequence of the violation of the ASR.
This happens because, as a result of the violation of the
ASR, the frequency of the longitudinal acoustic mode is
different from zero. ' Since the mixed optic-acoustic
mode corresponding to the displacement of a single ion
(per unit cell) contains a different component of the
acoustic mode according to which ion is moved, the re-
sulting energy variations are different. The absolute
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TABLE II. Calculated values of the high-frequency dielectric constant, e, static dielectric
constant, ep, transverse optic frequency, atro, longitudinal optic frequency, caLo (THz), and
effective charges, ZT*, in GaAs. The labels Ga and As in coLo refer to the ion which is actually
displaced in the calculation (see text). The number of special points for the BZ integration in
Eq. (2) is indicated. Experimental data as in Ref. 20.

10 points
28 points
Expt.

1 3.4
12.3
10.9

Cp

15.3
14.0
12.9

8. 14
8. 14
8.06

8.65
8.70
8.75

8.73
8.70
8.75

z+Ga
T

2.01
2.02
2. 16

z +As
T

—2. 15
—2.02
—2. 16

values of the effective charges differ accordingly. When
the number of special points is high enough to guarantee
convergence in the screening of the macroscopic field,
the longitudinal frequency does not depend on which
atom is moved, and the absolute values of the effective
charges coincide, as they should. The present calculation
is the first accurate enough to yield equal absolute values
of the eAective charges.

We believe that the method presented in this work will
bring many new interesting phenomena within the reach
of first-principles calculations. Among them, we mention
here the calculation of phonon spectra at interfaces or in
heterostructures; the electron-phonon coupling at an ar-
bitrary point of the BZ; the study of order/disorder in al-
loys and heterostructure by perturbation theory with
respect to the virtual crystal; and all those cases where
perturbation theory is expected to yield some insight into
complex phenomena.
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