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New Cellular Automaton Model for Magnetohydrodynamics
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A new type of two-dimensional cellular automation method is introduced for computation of magne-
tohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a
hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algo-
rithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and
magnetic-induction effects. The method is local in the microscopic space and therefore suited to mas-
sively parallel computations.

PACS numbers: 52.30.—q, 47. 10.+g, 47.65.+a, 52.65.+z
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where B, v, p p, p, and v are the magnetic field, velocity
field, pressure, mass density, resistivity, and viscosity,
respectively. For incompressible flow V. v =0 and

@=const, while the pressure is determined from the Pois-

The recent development of a hexagonal lattice-gas
(HLG) model' for two-dimensional hydrodynamics has
led to a considerable level of interest in the use of cellu-
lar automata (CA) for the study of fluid and fluidlike
physical systems. CA fluid models may off'er significant
computational advantages' and provide insights into the
relationship between macroscopic physics and the nature
of the microphysical world. ' Recently, Montgomery
and Doolen introduced a two-dimensional magnetohy-
drodynamics (MHD) model that makes use of both mi-

croscopic cellular-automata and macroscopic finite-
diA'erence methods. Their model departs from the usual
notion of cellular automata by a nonlocal computation
of the Lorentz force, involving spatial differences of the
coarse-grained magnetic potential. It has been suggest-
ed that nonlocal features of CA models of MHD and
other plasma systems may be inescapable in view of the
nonlocal physics that pervades the approximations lead-
ing to MHD. In the context of our own investigations
of a passive scalar CA model and its generalization to
MHD we concluded, in accordance with Ref. 5, that
nonlocal features are inevitable for this type of MHD
model, but we attribute the nonlocality to the formula-
tion in terms of the vector potential. In this Letter we
present an alternative formulation of MHD cellular au-
tomation in which the microscopic dynamical rules are
completely local in both time and space. The new
method would appear to be well suited to large-scale
parallel computation.

The system of two-dimensional incompressible MHD
equations for which we develop a CA model may be
written as

son equation that results from computation of the diver-
gence of (1). In the relevant two-dimensional (x,y)
geometry v and B lie in the x-J plane and depend only on
those coordinates and time. The magnetic potential 2,
is related to B by B=V&A,e, where i=xxy.

The possibility that all the nonlinearities in (1) and
(2) might be handled locally by a CA model may be
easily motivated by consideration of the structure of (1)
and (2), with neglect of pressure and dissipation, in

terms of the Elsasser variables z —=v ~ B/p'I . From
Bz —/t)t = —z Vz — it is easily seen that the relevant
nonlinearities, including Lorentz force, are nonlocal only
in an appropriately generalized advective sense. Ordi-
nary advection due to the velocity field can be adequately
treated in both hydrodynamic ' and vector-potential-
based MHD CA models. The Lorentz force (V&&B)
XB written as —VA, V 8, cannot be dealt with in this
way because it involves a nonlinear product of a quantity
having components of the gradient that are not parallel
to v, with a quantity having a second derivative which
must involve information from neighboring cells. On the
basis of the Elsasser-variable argument it would seem
necessary to treat B on more nearly equal footing with v

to achieve a local MHD CA model.
The basis of the present model is a modified streaming

algorithm for particles moving on a hexagonal grid in

which each particle occupies a state labeled by two
vectors, e, and eb, where e, = (cos2tra/6, sin2ttb/6),
eb =(cos2ttb/6, sin2ttb/6) and both a and b run from 1 to
6. No more than one particle in each cell may occupy a
state with a specified a and b, so that at most 36 particles
may simultaneously reside in a cell. Letting N, (=0 or
1) denote the occupation number at a certain location,
we define f,:(N, ) to be the ens—emble-averaged particle
distribution. At each CA time level, streaming, by
which we mean the noncollisional component of particle
motion, consists of motion to the adjacent cell in the
direction e, with probability 1

—
~
P,b ~

. Alternatively,
with probability

~ P,b ~
the particle moves to the adjacent

cell in the direction ebP, b/~ P,b ~. This leads to a kinetic
equation for the tensor particle distribution f„

Bf, (x, t )/9t = —j(I —
~
P,b ~

)e, +P,bebj Vf, (x, t ) + A,t„ (3)
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where A, b represents the eftect of all collisions that
modify f,

The macroscopic number density, fluid velocity field,
and magnetic field will be designated as n, v, and B, re-
spectively, and will be related to the microstate by the
relations

n =yfb,
a, b

nv =g [(I —
l P,b l )e, + P,bebj f,",

a, b

nB =Q IQabeb+R be, jf„
a, b

(4)

(5)

(6)

where the 6 x 6 matrices P, Q, and R are as yet undeter-
mined constants that must be selected on theoretical
grounds to give the desired physical behavior of MHD.
By requiring that the behavior of the system be locally
invariant under both proper and improper rotations, we
conclude that P, Q, and R must be circulant matrices,
and that P,b, Q,b, and R,b depend only on

l
a —b l.

There remain twelve coefficients in these matrices that
must be selected to specify the streaming behavior of the
model, from which all the nonlinearities of MHD will

emerge.
Further simplification is obtained by consideration of

symmetries of the Lorentz force that are implied by the
structure of (I) and (2). Notice that the Lorentz force
is unchanged by the transformation B —B. We wish
to have this macroscopic transformation correspond to
the microscopic transformation eb —eb, so that eb will
act as the magnetic quantum in the same way that c":,

controls undeflected momentum transport. To achieve
this, we require that B —B everywhere whenever
eb —eb, but that neither v nor e, is aff'ected. Upon
consideration of (5) and (6), one can see that this re-
quires P,b—= —P,b+3 to ensure that the velocity is un-

changed, while Q,b—= Qgb+3 and R,b
=——R,b+3. Com-

bining this with the rotational and reflection symmetries,
we are left with just six independent coefficients, chosen
to be P„, P„+1, Q„, Q„+i, R„, and R„+i. With
these choices the transformation c";b —eb will cause
B —B without changing v while the transformation
e, —e, will lead to v —v without modifying B.
This choice of symmetry also accounts for physically
correct behavior of fluid elements in simple macroscopic
field geometries. Bidirectional streaming allows the
average trajectory of a particle to vary relative to e, and
eb. Consider for the moment the most probable eb to be
a good estimate of the local macroscopic B. Particles
streaming across a simple sheared B can easily be under-
stood to experience a deflecting force that is qualitatively

consistent with the Lorentz force since deflection will be
towards the most probable eb when the angle
O=cos (e, eb) is acute or towards —eb when the an-

gle is obtuse. Moreover, the eAect of magnetic pressure
is also correctly accounted for by acceleration of parti-
cles towards the weaker magnetic field region where the
most probable eb will be encountered less frequently.

Following previous CA fluid-model developments'
collision rules are adopted to randomize the microscopic
state while preserving macroscopic quantities that are
found to be necessary to give correct ensemble averaged
behavior. Essential to the approach are inequalities be-
tween collisional and macroscopic time and length scales
that allow the local microstate to be treated as near to
equilibrium. The same approach is adopted here, with
the requirement that the collision term, A, b in Eq. (3),
satisfies g, b A, b =0,

y I(1 — P.b l)e.+P.bebj 0 b

a, b

rin/rlr+V (nv) =0. (7)

This is the ordinary fluid-continuity equation.
In order to deduce transport equations for v and B,

which will be cast in the form of Eqs. (I) and (2), it is

necessary to rely on collisions to produce a local equilib-
rium state. In the lowest-order Chapman-Enskog expan-
sion, ' the collisions lead to a local Fermi-Dirac equi-
librium distribution

f, (equil) =I/[I+exp(a+P e, +g eb)], (8)

where a, p, and rl are obtained by the definitions of n, v,
and B in (4)-(6).

The momentum equation is obtained by our multiply-
ing both sides of (3) by [(I —

l P,b l )e, +P,bebj, sum-
ming over a and b, and using Eqs. (3)-(5). To proceed
we consider the expansion of (8) in the limit

l
v

l
« 1 and

l
B

l
« l. After some tedious algebra, which is facilitat-

ed by use of the symmetries adopted above, we arrive at

and g, b I,beb+ R,be, j A, b =0. These represent conser-
vation of particle number, the momentum nv, and the
density-weighted magnetic field nB. A large number of
possible collision rules satisfy these requirements, many
of them straightforward extensions of hydrodynamic CA
col 1 i sion s. '

Without further approximation, and with no assump-
tions about the form of the distribution function, the
equation of particle transport is obtained from the kinet-
ic equation (3) by summation over a and b, and then use
of conservation of particles by collisions and Eqs. (4) and
(5). This leads to

r)(nv)/'dr = —CiVn/6 —C2V. [nG(n)vv]+C3V [nG(n)BB]+C4V[nG(n)v ]+C5V[nG(n)B ] (9)

In Eq. (9), G(n) = (18 —n)/(36 —n) and Cl, Cz, C3, C4, and Cs are rational functions of the six independent streaming
coefficients in the matrices P, Q, and R. The above relation contains terms of the same general form as the momentum
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equation obtained in other fluid CA models, ' except that correctly structured terms involving the magnetic field also
appear.

Similarly, an equation of the same general form as the induction equation (2) is obtained after multiplication of (3)
by Q,beb+R, beb and summation over all a and b T.he result is

6(n B)/r)t = D
~
V [nG (n) vB] + D2V [nG (n) Bv] +D3V [nv B], (10)

where D], D2, and D3 depend only on the streaming coefficients.
To arrive at a CA model for MHD a number of restrictions must be placed on the coefficients in (9) and (10). For

example, the last term in (10) must be eliminated, since it does not appear in (2) and will generate nonsolenoidal mag-
netic fields; thus D3 =0 must be enforced. For nonnegative pressure, Ci & 0 is required. Furthermore, for consistency
with (1) and (2), we must choose C2 =C3 =D~ =D2 & 0. Along with the constraints that

I P, t, I
& 1 (to allow a proba-

bilistic interpretation of the modified streaming) and the vanishing of D3, we arrive at four constraint equations and
four inequalities that restrict allowed values of streaming coefficients P„,P„+~, Q„, Q„+~, R„, and R„+i. We have

found numerical solutions to the constraints that indicate the existence of continuous ranges of allowed parameters, all

of which have P„&0. One solution is P„=—
—,', P„+~

=+ —,', Q„= —,', Q„+ ~
—0.065, R„=O, and R„+~

= —0.232.
Having solved the constraint equations the final result for the zeroth-order macroscopic behavior of the MHD CA

model is

rl(nv)/t)t = —C2V [nG(n)(vv —BB)]—V[C~n/6 —nG(n)(C4v +CsB )],

r)(n B)/Bt = —C2V [nG (n) (v B—Bv) ]. (12)

For the above solution we have found C i
= 1.77,

Cp = 1.09, C4 = —Cs = C2/2. For
I
v

I
« 1 and

I
B I

« 1 ~

corresponding to the low-Mach-number flow limit, the
equation of state gives a lowest-order relation between
pressure and density of the form p =C~n/6, with the ad-

ditional anisotropic effects of order v and B . In the
same limit, the density will exhibit only small fluctua-
tions about a uniform constant value' so that the fac-
tors of n in various terms cancel and the factor C2G(n)
may be used to rescale the relationship between micro-
scopic and macroscopic time. ' This leads to a set of
dynamical equations almost identical to incompressible
MHD. All numerical solutions to the constraints that
we have found have the property that C4= Cs =Cz/2,
leading to an exact representation of the Lorentz force in

(11).
There are a number of additional issues important to

the development of the MHD CA model that warrant
brief mention here; a detailed description of the model
will be forthcoming. ' First, the allo~ed collisions are
closely related to those in the six-state hexagonal lattice
gas (HLG), "and always involve sets of particles with
zero net v and B. At very low densities n &&1 collisions
will be infrequent and the collisional mean free path may
be unacceptably large. Fortunately there appears to be
no restriction on running the model at higher density, ex-
cept that n & 18 [so that G(n) &0]. However, certain
manipulations in the lattice kinetic theory may be
difficult to justify'' for high densities. The key restric-
tion on interpreting (11) and (12) as a model of MHD is

that the density be very nearly uniform and the flow
therefore incompressible. This approximation is favored
both by substantial inequality between the characteristic
microscopic and macroscopic length and by small ampli-

!
tudes of the macroscopic fields, equivalent to the
low-Mach-number' condition for the HLG. This latter
condition should be no more restrictive here than for the
HLG since the sound speed for the present model is

c, = (C~/6) 't . Moreover, small departures from in-

compressibility should behave properly as sound waves in

the nearly quiescent state by the same reasoning used in

the HLG case. We are currently investigating' the be-
havior of M H D Alfven and magnetosonic waves.
Another issue of importance is the requirement that
V B =0. The choice of streaming coefficients leading to
D3 ——0 eliminated the most seriously offending term in

(10), but it is not possible to eliminate V B exactly. On
the other hand, from the divergence of (12), we find that
t)V. B/9t is at most of the order of the density inhomo-
geneities, presumably Mach number squared. This is no
more restrictive than the low- Mach-number require-
ment for incompressibility. Moreover, diff'usion de-
creases V- B. It will be important, ho~ever, to initialize
the model with a magnetic field that is as nearly
divergence-free as possible. The viscosity' and rnag-
netic diflusivity in this model have not yet been comput-
ed in view of the number of degrees of freedom involved.
Nevertheless, we have found that the first-order
Chapman-Enskog expansion gives the correct structure
of the diftusion terms, i.e. , they are proportional to V v
in the momentum equation and V B in the induction
equation.

I n summary we find that field-line stretching and
Lorentz forces can be incorporated into a local CA mod-
el by the introduction of a microscopic bidirectional
streaming procedure. The allowed particle states on the
hexagonal lattice are labeled by two vectors and the
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direction of particle motion is selected according to
prescribed streaming coefficients, leading to a modified
kinetic equation involving a tensor particle distribution.
The definition of the macroscopic velocity and magnetic
fields also depend on the streaming coefficients. With
proper choice of the coe%cient matrices P, Q, and R,
MHD is recovered for low Quid speed and low magnetic
field strength. The success of the model is associated
with the choice of symmetries for the streaming
coefficients, which supports the notion that simplified
microscopic models may exhibit physically meaningful
macroscopic behavior when the microscopic conservation
laws and symmetries are correctly constructed. It is also
likely that systems of equations other than MHD might
be modeled by CA methods in a similar fashion. The
idea of multidirectional streaming has some precedent in

the recent CA model of Boghosian and Levermore' for
the one-dimensional Burgers equation. The present
model is well suited for parallel computation on
machines such as the massively parallel processor be-
cause the microscopic behavior is independent of the
macroscopic state. N umerical experimentation and com-
parison with standard computational methods will be
needed to assess the potential utility' and possible limita-
tions' of this CA MHD model.
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