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Glueball Masses as a Test of the I/N Expansion
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We compute the scalar-glueball mass m(0++) in units of the square root of the string tension, ja, for
SU(N) gauge theories on the lattice, with iV=2, 3, 5, 6. We identify a general-scaling window in which
the glueball mass is approximately independent of the lattice spacing, yielding an estimate of m(0++) in
the continuum. The estimate is corroborated by the excellent agreement between Hamiltonian and
Lagrangean results for lV =2, 3. The continuum values of m(0++) thus obtained for various values of jV
are remarkably close to each other, indicating a rapid convergence of the I/N expansion.

PACS numbers: 11.15.Pg, 12.38.Gc, 14.40.Cs

The I/N expansion' provides an appealing conceptu-
al framework for an understanding of many qualitative
features of hadronic physics as consequences of QCD.
The most notable of these are (a) the suppression of
quark loop effects in hadronic physics and the absence of
exotic mesons; (b) Zweig's rule; (c) the approximate va-

lidity of the Regge description of the hadronic 5 matrix
as sum over tree diagrams involving exchange of physical
hadrons only; and (d) the relative importance of reso-
nant two-body final states in multiparticle decays of un-
stable mesons. In addition, the large-N picture of QCD
provides a basis for an understanding of the phenomeno-
logical success of Skyrmion physics in describing the
static and dynamic properties of baryons. "

The qualitative arguments in favor of the large-N ap-
proximation are therefore very compelling. On the other
hand, the question of whether the 1/N expansion can be-
come a practical calculational tool remains open. The
two main reasons for this are these: First, although
SU(N) gauge theory is greatly simplified in the large-N
limit, it is still very dificult to solve for physical observ-
ables in 3+1 dimensions. Second, even if the solution of
the large-N theory were known, one would still need to
determine whether for physical observables the I/N ex-
pansion converges fast enough to make large N a quanti-
tatively reliable approximation to the real world, with
N =3. The most straightforward way of answering this
question would be to compute the coe%cients of some
I/N terms in the large-N expansion. This has proven to
be exceedingly dificult, since such corrections involve all
the complexity of summing nonplanar diagrams.

In this work we estimate the importance of 1/lV
corrections by a different approach: We numerically
evaluate the scalar-glueball mass as a function of N, thus
providing the first direct evidence that these corrections
are small. Our strategy is as follows. Given some physi-
cal observable (0)tv for a family of SU(N) theories,

iV=2, 3, . . . we first require that (0)~ converges to a
definite value:

(0)tv
—(0)3 «1 for N»3.03 (2)

In practice, for SU(N) in four dimensions, there is no
rigorous way of testing the validity of (2), since we have
no way of calculating (0)tv analytically, nor do we know
how to compute the I/N corrections explicitly. We can,
however, calculate (0)tt approximately for several
values of N. If (2) is valid for the approximants to (0)tv
and (0)3, then we have at least a good indication that it
might be true for the exact solution of the theory as well.

The validity of (2) has been previously studied analyti-
cally, in the context of two-dimensional field theories,
and numerically for the plaquette determinant detU(p)
in four-dimensional lattice gauge theory. As far as we
know, in the existing literature there is no direct test of

In the leading order in 1/N expansion the various observ-
ables typically scale like some power of N; for example,
pion-nucleon cross section —N, f,—N, g~ —JV0 1t/2 1

etc. Equation (I) is trivially satisfied if &0)tv —N . If
(0)tv —lV', with a&0, then one can always form a ratio
in which the leading dependence on N cancels out. As
an example, consider f and gz. These quantities have
been calculated in the Skyrme model, which can be
thought of as a rough approximation to the effective
low-energy Lagrangean of large-N QCD. While both

f, and g~ differ substantially from experiment (by 30%
and 50%, respectively), their ratio is independent of N:
To the leading order, f, /g~ —jV, and agrees with exper-
iment to 3%.

In order for (0) to serve as a fairly accurate estimate
of (0)3, we further require the convergence to be fast:
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(2) for continuum observables with direct physical
significance in 3+1 dimensions. In the following we pro-
vide such a test by demonstrating that (2) is indeed valid
for the approximate mass of the scalar glueball in pure-
gauge SU(N) theories.

The standard method for calculating glueball masses
in QCD is lattice gauge theory, which can be defined ei-
ther in the Lagrangean form on a Euclidean space-time
lattice, ' or in the Hamiltonian form with continuous
time and a three-dimensional spatial lattice. Our work
will mainly concentrate on the latter and is based on the
Kogut-Susskind SU(N) Hamiltonian"

H = (g /a) lgt —,
' EPEI'+ (2N/g )

x g [I —(I/2N)Tr(U&+Uz)II, (3)

where Ef is the chromoelectric field on the link 1 and U~
is the gauge-invariant, oriented product of the link field
variables Ui taken around a plaquette p.

The masses calculated from (3) are functions of the
dimensionless coupling constant g, expressed in physical
units by means of the inverse lattice constant I/a. In or-
der for any dimensional observable m; to have a fixed
value in the continuum limit, g must vary with a in a
well defined manner governed by the P function. When
the continuum is approached by our letting a 0,
asymptotic freedom requires that g 0 as well. Conse-
quently, the p function in the weak-coupling limit is
determined by the continuum perturbation theory. Up
to two loops, it gives the scaling of the lattice scale pa-
rameter AL as'

51/I 2 I

1 48m
At =—

a 11
24m

exp
11

(4)

where (= I/Ng and AL can be perturbatively related to
the usual QCD scale parameter A. ' If (4) holds for a
certain range of g, usually referred to as the (asymptot-
ic) scaling window, the lattice theory is said to exhibit
asymptotic scaling. All masses, and all observables with
dimensions of mass m, , must scale in the same fashion
and be proportional to AL with coe%cients m; which are
independent of g in the weak-coupling limit:

R
strong coUpling

from the continuum one, ' but mass ratios (6) are still
independent of g, and reproduce continuum physics. ' '

Whether or not (5) is true in the intermediate-
coupling regime is an empirical question for a given lat-
tice calculation. One should plot the appropriate ratios
R;~ as functions of the lattice spacing (or lattice coupling
constant) and see whether they are approximately con-
stant over a range of values of a or g . A generic case
exhibiting such a "scaling window" is schematically de-
picted in Fig. 1: The ratio R starts from the strong-
coupling regime (no scaling), exhibits a scaling window,
and eventually diverges. The absence of scaling in the
extreme weak-coupling limit is usually due to the break-
down of various approximation methods, resulting from
dominance of finite-size eN'ects.

We have tested the convergence of the 1/N expansion
by computing the ratio R~(g) =m(0 +)/Jo of the
scalar-glueball mass m(0++) to the square root of the
string tension Ja, for SU(N) theories on the lattice with
N =2, 3, 5, 6. It is interesting to note that m (0++)/cr is
not just an arbitrary ratio of two masses: It is the inter-
cept of the Regge trajectory corresponding to the 0++
state. For N ) 3 there are no results from Lagrangean
Monte Carlo calculations because of the prohibitively
large amount of computer time required. Instead, we
base our work on some recent Hamiltonian calculations.
For N ) 3, we use the variational estimates of m(0++)
obtained by Chin, Long, and Robson. ' The variational
method employed there gives an excellent estimate of the
exact ground-state energy for SU(3) and reproduces the
critical value of g at which a phase transition in the
N ~ limit takes place. The corresponding expressions
for o up to O(gs) are taken from the strong-coupling ex-
pansion of Kogut and Shigemitsu. ' Where higher-order
terms are available, they have little eA'ect on R~(g) in

the region of interest. For N =2 the ratio m(0++)/Vcr

m;(g) =m;At ((). (5)

As an obvious consequence of (5), dimensionless ratios
of physical observables evaluated inside the scaling win-
dow do not depend on g, nor on the lattice spacing, and
reproduce the mass ratios in the continuum:

m;(g)/mj(g) =m;/mi=R;z.
scaling window

0 p prox irna tion
breakdown

'~

'~

It is important to point out that a lattice theory can ex-
hibit a more general scaling in a wider scaling window,
for which (5) remains valid but for which d,L is is not
given by (4). In that regime, scaling is governed by a
nonperturbative p function, which diII'ers substantially

/=1/Ng

FIG. 1. A generic case illustrating the diferent regimes in a
typical calculation of mass ratios on the lattice.
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FIG. 2. The ratio m(0++)/ ja for SU(lV) lattice gauge
theories, N =2 (Ref. 15) and 3,5,6 (Refs. 20-22). The SU(3)
t-expansion curve is an average of several Pade approximants
in Ref. 22. The two thin horizontal lines bracket recent Eu-
clidean Monte Carlo results for SU(2) and SU(3) (Refs.
23-27).

has been computed directly by use of the t expansion. '

For N =3 a recently obtained t-expansion result for this
ratio' is in good agreement with the variational calcula-
tion, thus providing a valuable consistency test for the
various approximation methods.

The curves showing R~(g) are shown in Fig. 2. They
all exhibit the behavior schematically depicted in Fig. 1,
thus providing a good indication of the onset of a "scal-
ing window" as required by Eqs. (5) and (6). Further
evidence that the results shown in Fig. 2 do indeed
represent continuum physics is supplied by Euclidean
Monte Carlo results for SU(2) and SU(3), for which ex-
tensive numerical simulations have been performed (see
Refs. 23-27 for the most recent Monte Carlo results).
If one assumes Jo =0.4 GeV then all these dilTerent
calculations predict m(0++) = 1.2 GeV, provided that
the effect of the fermion loops is small.

Since R is a ratio of two physical masses, for a given
N its value should be the same, independent of the de-
tails of lattice regularization. Indeed, Euclidean Monte
Carlo results for R2 and R3, as bracketed by the two
horizontal lines in Fig. 2, are in excellent agreement with
the Hamiltonian calculation, both variational and t ex-
pansion. We find it especially gratifying that very
di A'erent approximation methods do indeed yield the
same continuum physics.

The most interesting physical result in Fig. 2 is that
the continuum values of R„are remarkably close to one
another for all N and that the large N limit is
eA'ectively reached for N~ 5. To our knowledge, this
provides the first direct evidence, in the sense of Eq. (2),
for the rapid convergence of 1/N expansion for physical
observables in SU(N). A caveat is, however, also neces-

sary at that this point: Figure 2 shows a ralio of two
physical quantities. It is possible (as would be suggested
from two dimensions by Ref. 8) that the 1/N corrections
to the glueball mass and string tension taken separately
are not very small. Their values may be very close, how-
ever, so that in the ratio the I/N terms cancel out. It
would be very interesting to find out whether this is
indeed the case in four dimensions and why such 1/N
corrections might be close.

There are a large number of observables which are in-
dependent of N in the large-N limit. If the fast conver-
gence of the large-N expansion is true not only for glue-
ball masses, but for the latter physical observables as
well, then an approximate solution of the large-N theory
might reasonably be expected to yield a good quantita-
tive estimate of N =3 physics.
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